
PA160: Net-Centric Computing II.

Distributed Systems

Luděk Matyska

Spring 2024

Luděk Matyska · Distributed Systems · Spring 2024 1 / 39

Issues Examples Replication in Distributed Systems

Lecture overview
Distributed Systems

Key characteristics
Challenges and Issues
Distributed System Architectures
Inter-process Communication

Middleware
Remote Procedure Calls (RPC)
Remote Method Invocation (RMI)
Common Object Request Broker Architecture (CORBA)

Service Oriented Architecture (SAO)
Web Services
Issues Examples

Fault Tolerance in Distributed Systems
Replication in Distributed Systems
Transactions in Distributed Systems
Scheduling/Load-balancing in Distributed Systems

Conclusion
Luděk Matyska · Distributed Systems · Spring 2024 2 / 39

Issues Examples Replication in Distributed Systems

Replication in Distributed Systems

What is Replication
Having multiple copies of the same data at several nodes

For read-only replicas, the implementation is easy – just copy it
The problem is with writing (as usual)

how to ensure consistency between the replicas

Read-after-write consistency

Luděk Matyska · Distributed Systems · Spring 2024 3 / 39

Issues Examples Transactions in Distributed Systems

Transactions in Distributed Systems

A transaction is a series of operations that fulfil
Atomicity

The transaction is completed entirely or not at all
Consistency

The system is always in a consistent state
Isolation

Each transaction is run independently on the other
transactions

Durability
Once completed, it endures

ACID

Luděk Matyska · Distributed Systems · Spring 2024 4 / 39

Issues Examples Transactions in Distributed Systems

Transactions in Distributed Systems
Operations

Begin
Initiate new transaction

Commit
End the transaction and make all results visible

Abort
End the transaction and all changes made during the
transaction are undone

Roles
Client

The issuer
Coordinator

Controls the whole transaction (handles all operations)
Server

The component whose state is changed by the transaction
Registered with the coordinator

Luděk Matyska · Distributed Systems · Spring 2024 5 / 39

Issues Examples Transactions in Distributed Systems

Flat and Nested Transactions

Flat transaction
Has a single initiating (Begin) and a single end point (Commit or
Abort)
If locking is used, transactions are serialized

Nested transactions
A transaction includes other transactions (called sub-transactions)
Depth is not limited

The nested transactions use distributed system to its full
potential

Luděk Matyska · Distributed Systems · Spring 2024 6 / 39

Issues Examples Transactions in Distributed Systems

Atomic Commit
If transaction updates data on multiple nodes, then

Either all nodes must commit, or all must abort
If any node crashes, all must abort

This is called atomic commitment problem
Atomic commit versus consensus

Consensus Atomic commit
One or more nodes propose a
value

Every nodes votes whether to
commit or abort

Any one of the proposed values
is accepted

Must commit if all nodes vote
to commit; must abort if even
a single node votes to abort

Crashed nodes can be toler-
ated if quorum is working

Must abort if even a single
node crashes

Luděk Matyska · Distributed Systems · Spring 2024 7 / 39

Issues Examples Transactions in Distributed Systems

Two-phase Commit

The most common algorithm to implement atomic commit
Basic principles

Client starts a regular transaction
When a client is ready to commit, it sends a commit request to the
transaction coordinator
Coordinator send a prepare message to each server participating
in the transaction
Each server replies with a message indicating whether it is able
to commit the transaction

Each server must ensure it can commit but did not
commit yet

This is the first phase

Luděk Matyska · Distributed Systems · Spring 2024 8 / 39

Issues Examples Transactions in Distributed Systems

Two-phase Commit

Second phase
The coordinator collects the messages
If all nodes reply with ok/prepared, the coordinator decides to
commit
If at least one node does not confirm, all does not reply within a
timeout, the coordinator decides to abort
The coordinator send the decision to all replicas

What if coordinator crashes?

Luděk Matyska · Distributed Systems · Spring 2024 9 / 39

Issues Examples Transactions in Distributed Systems

Two-phase Commit – Coordinator Crashes
Coordinator’s actions

Coordinator writes its decision to disk
After recovery, it sends the decision to nodes (or abort, if no
decision written)
The nodes are blocked till coordinator recovers

Coordinator is thus a single point of failure
Avoidance through the consensus algorithm or total order
broadcast
Paxos Commit

All nodes send the vote through the total order broadcast
Each node counts the votes

Only the first vote from a node is counted
If any vote is abort, the whole transaction is aborted

Total order broadcast ensures the same delivery order on all
nodes
Total order broadcast ensures the same decision on each node

Luděk Matyska · Distributed Systems · Spring 2024 10 / 39

Issues Examples Scheduling/Load-balancing in Distributed Systems

Scheduling/Load-balancing in Distributed Systems
For concurrent execution of interacting processes:

communication and synchronization between processes are the
two essential system components

Before the processes can execute, they need to be:
scheduled and
allocated with resources

Why scheduling in distributed systems is of special interest?
because of the issues that are different from those in traditional
multiprocessor systems:

the communication overhead is significant
the effect of underlying architecture cannot be ignored
the dynamic behaviour of the system must be addressed

local scheduling (on each node) + global scheduling

Luděk Matyska · Distributed Systems · Spring 2024 11 / 39

Issues Examples Scheduling/Load-balancing in Distributed Systems

Scheduling/Load-balancing in Distributed Systems

let’s have a pool of jobs
there are some inter-dependencies among them

and a set of nodes (processors) able to reciprocally communicate

Scheduling

The term scheduling means assigning jobs to the machines/processors
in a way which minimizes the time/communication overhead necessary
to compute them.

Load-balancing

The term load-balancing means a process that tries to keep all machines
in a (distributed) system equally occupied.

Luděk Matyska · Distributed Systems · Spring 2024 12 / 39

Issues Examples Scheduling/Load-balancing in Distributed Systems

Scheduling/Load-balancing in Distributed Systems
the scheduling/load-balancing task can be represented using graph
theory:

the pool of N jobs with dependencies can be described as a graph
G(V ,U), where

the nodes represent the jobs (processes)
the edges represent the dependencies among the jobs/processes (e.g., an edge from i
to j requires that the process i has to complete before j can start executing)

the graph G has to be split into p parts, so that:
N = N1 ∪ N2 ∪ · · · ∪ Np

which satisfy the condition, that |Ni| ≈
|N|
p , where

|Ni| is the number of jobs assigned to the processor i, and
p is the number of processors, and
the number/cost of the edges connecting the parts is minimal

the objectives:
uniform jobs’ load-balancing
minimizing the communication (the minimal number of edges among the parts)

the splitting problem is NP-complete
the heuristic approaches have to be used

Luděk Matyska · Distributed Systems · Spring 2024 13 / 39

Issues Examples Scheduling/Load-balancing in Distributed Systems

Scheduling/Load-balancing in Distributed Systems

Objectives:
to enhance overall system performance metric
to minimize process completion time and processor utilization

Load-balancing deals with equal distribution of load among
processors/machines

Scheduling and load-balancing complements and to some extent
overlaps each other

the same overall objective
can be seen as two phases of the same process

depends on the point of view – tasks or
processors/machines

Luděk Matyska · Distributed Systems · Spring 2024 14 / 39

Issues Examples Scheduling/Load-balancing in Distributed Systems

Scheduling/Load-balancing in Distributed Systems

Available techniques:
Task Assignment

individual related tasks of the process are scheduled to
appropriate processors/machines

Load Balancing
the workload is balanced mong processors/machines in
the system

Load Sharing
to assure no processor/machine is idle if there is a
process/task waiting to be processed

Luděk Matyska · Distributed Systems · Spring 2024 15 / 39

Issues Examples Scheduling/Load-balancing in Distributed Systems

Scheduling/Load-balancing in Distributed Systems

the “proper” approach to the scheduling/load-balancing problem
depends on the following criteria:

jobs’ cost
dependencies among the jobs
jobs’ locality

Luděk Matyska · Distributed Systems · Spring 2024 16 / 39

Issues Examples Scheduling/Load-balancing in Distributed Systems

Scheduling/Load-balancing in Distributed Systems
Jobs’ Cost

the job’s cost may be known:
before the whole problem set’s execution
during problem’s execution, but before the particular job’s
execution
just after the particular job finishes

cost’s variability – all the jobs may have (more or less) the same
cost or the costs may differ

the problem classes based on jobs’ cost:
all the jobs have the same cost: easy
the costs are variable, but, known: more complex
the costs are unknown in advance: the most complex

Luděk Matyska · Distributed Systems · Spring 2024 17 / 39

Issues Examples Scheduling/Load-balancing in Distributed Systems

Scheduling/Load-balancing in Distributed Systems
Dependencies Among the Jobs

is the order of jobs’ execution important?
the dependencies among the jobs may be known:

before the whole problem set’s execution
during problem’s execution, but before the particular job’s
execution
are fully dynamic

the problem classes based on jobs’ dependencies:
the jobs are fully independent on each other: easy
the dependencies are known or predictable: more complex

flooding
in-trees, out-trees (balanced or unbalanced)
generic oriented trees (DAG)

the dependencies dynamically change: the most complex
e.g., searching/lookup problems

Luděk Matyska · Distributed Systems · Spring 2024 18 / 39

Issues Examples Scheduling/Load-balancing in Distributed Systems

Scheduling/Load-balancing in Distributed Systems
Locality

do all the jobs communicate in the same/similar way?
is it suitable/necessary to execute some jobs “close” to each
other?
when the job’s communication dependencies are known?

the problem classes based on jobs’ locality:
the jobs do not communicate (at most during initialization): easy
the communications are known/predictable: more complex

regular (e.g., a grid) or irregular
the communications are unknown in advance: the most complex

e.g., a discrete events’ simulation

Luděk Matyska · Distributed Systems · Spring 2024 19 / 39

Issues Examples Scheduling/Load-balancing in Distributed Systems

Scheduling/Load-balancing in DSs – Approaches

in general, the “proper” solving method depends on the time,
when the particular information is known
basic solving algorithms’ classes:

static – offline algorithms
semi-static – hybrid approaches
dynamic – online algorithms

some (but not all) variants:
static load-balancing
semi-static load-balancing
self-scheduling
distributed queues
DAG planning

Luděk Matyska · Distributed Systems · Spring 2024 20 / 39

Issues Examples Scheduling/Load-balancing in Distributed Systems

Load Balancing Algorithms

Luděk Matyska · Distributed Systems · Spring 2024 21 / 39

Issues Examples Scheduling/Load-balancing in Distributed Systems

Scheduling/Load-balancing in DSs – Approaches
Semi-static load-balancing

suitable for problem sets with slow changes in parameters, and
with locality importance
iterative approach

uses static algorithm
the result (from the static algorithm) is used for several steps
(slight unbalance is accepted)
after the steps, the problem set is recalculated with the static
algorithm again

often used for:
particle simulation
calculations of slowly-changing grids (but in a different sense
than in the previous lectures)

Luděk Matyska · Distributed Systems · Spring 2024 22 / 39

Issues Examples Scheduling/Load-balancing in Distributed Systems

Scheduling/Load-balancing in DSs – Approaches
Self-scheduling I.

a centralized pool of jobs
idle processors pick the jobs from the pool
new (sub)jobs are added to the pool

+ ease of implementation

suitable for:
a set of independent jobs
jobs with unknown costs
jobs where locality does not matter

unsuitable for too small jobs – due to the communication overhead
⇒ coupling jobs into bulks

fixed size
controlled coupling
tapering
weighted distribution

Luděk Matyska · Distributed Systems · Spring 2024 23 / 39

Issues Examples Scheduling/Load-balancing in Distributed Systems

Scheduling/Load-balancing in DSs – Approaches
Self-scheduling II. – Fixed size & Controlled coupling
Fixed size

typical offline algorithm
requires much information (number and cost of each job, . . .)
it is possible to find the optimal solution
theoretically important, not suitable for practical solutions

Controlled coupling
uses bigger bulks in the beginning of the execution, smaller bulks
in the end of the execution

lower overhead in the beginning, finer coupling in the end

the bulk’s size is computed as: Ki = ⌈ Ri
p ⌉

where:
Ri . . . the number of remaining jobs
p . . . the number of processors

Luděk Matyska · Distributed Systems · Spring 2024 24 / 39

Issues Examples Scheduling/Load-balancing in Distributed Systems

Scheduling/Load-balancing in DSs – Approaches
Self-scheduling II. – Tapering & Weighted distribution

Tapering
analogical to the Controlled coupling, but the bulks’ size is
further a function of jobs’ variation
uses historical information

low variance ⇒ bigger bulks
high variance ⇒ smaller bulks

Weighted distribution
considers the nodes’ computational power
suitable for heterogenous systems
uses historical information as well

Luděk Matyska · Distributed Systems · Spring 2024 25 / 39

Issues Examples Scheduling/Load-balancing in Distributed Systems

Scheduling/Load-balancing in DSs – Approaches
Distributed Queues

≈ self-scheduling for distributed memory
instead of a centralized pool, a queue on each node is used
(per-processor queues)
suitable for:

distributed systems, where the locality does not matter
for both static and dynamic dependencies
for unknown costs

an example: diffuse approach
in every step, the cost of jobs remaining on each processor is
computed
processors exchange this information and perform the balancing
locality must not be important

Luděk Matyska · Distributed Systems · Spring 2024 26 / 39

Issues Examples Scheduling/Load-balancing in Distributed Systems

Scheduling/Load-balancing in DSs – Approaches
Centralised Pool vs. Distributed Queues

Figure: Centralised Pool (left) vs. Distributed Queues (right).

Luděk Matyska · Distributed Systems · Spring 2024 27 / 39

Issues Examples Scheduling/Load-balancing in Distributed Systems

Scheduling/Load-balancing in DSs – Solving
Methods
DAG Planning

DAG Planning
another graph model

the nodes represent the jobs (possibly weighted)
the edges represent the dependencies and/or the communication
(may be also weighted)

e.g., suitable for digital signal processing
basic strategy – divide the DAG so that the communication and
the processors’ occupation (time) is minimized

NP-complete problem
takes the dependencies among the jobs into account

Luděk Matyska · Distributed Systems · Spring 2024 28 / 39

Issues Examples Scheduling/Load-balancing in Distributed Systems

Scheduling/Load-balancing in DSs – Design Issues I.
When the scheduling/load-balancing is necessary?

for middle-loaded systems
lowly-loaded systems – rarely job waiting (there’s always an idle
processor)
highly-loaded systems – little benefit (the load-balancing cannot
help)

What is the performance metric?
mean response time

What is the measure of load?
must be easy to measure
must reflect performance improvement
example: queue lengths at CPU, CPU utilization

Luděk Matyska · Distributed Systems · Spring 2024 29 / 39

Issues Examples Scheduling/Load-balancing in Distributed Systems

Scheduling/Load-balancing in DSs – Design Issues I.
Types of policies:

static (decisions hardwired into system), dynamic (uses load
information), adaptive (policy varies according to load)

Policies:
Transfer policy: when to transfer a process?

threshold-based policies are common and easy
Selection policy: which process to transfer?

prefer new processes
transfer cost should be small compared to execution cost

⇒ select processes with long execution times
Location policy: where to transfer the process?

polling, random, nearest neighbour, etc.
Information policy: when and from where?

demand driven (only a sender/receiver may ask for), time-driven
(periodic), state-change-driven (send update if load changes)

Luděk Matyska · Distributed Systems · Spring 2024 30 / 39

Issues Examples Scheduling/Load-balancing in Distributed Systems

Scheduling/Load-balancing in DSs – Design Issues II.
Sender-initiated Policy

Transfer policy

Selection policy: newly arrived process
Location policy: three variations

Random – may generate lots of transfers
⇒ necessary to limit max transfers

Threshold – probe n nodes sequentially
transfer to the first node below the threshold, if none, keep job

Shortest – poll Np nodes in parallel
choose least loaded node below T
if none, keep the job

Luděk Matyska · Distributed Systems · Spring 2024 31 / 39

Issues Examples Scheduling/Load-balancing in Distributed Systems

Scheduling/Load-balancing in DSs – Design Issues II.
Receiver-initiated Policy

Transfer policy: if departing process causes load < T , find a
process from elsewhere
Selection policy: newly arrived or partially executed process
Location policy:

Threshold – probe up to Np other nodes sequentially
transfer from first one above the threshold; if none, do
nothing

Shortest – poll n nodes in parallel
choose the node with heaviest load above T

Luděk Matyska · Distributed Systems · Spring 2024 32 / 39

Issues Examples Scheduling/Load-balancing in Distributed Systems

Scheduling/Load-balancing in DSs – Design Issues II.
Symmetric Policy

combines previous two policies without change
nodes act as both senders and receivers

uses average load as the threshold

Luděk Matyska · Distributed Systems · Spring 2024 33 / 39

Issues Examples Scheduling/Load-balancing in Distributed Systems

Scheduling/Load-balancing in DSs – Case study
V-System (Stanford)

state-change driven information policy
significant change in CPU/memory utilization is broadcast to all
other nodes

M least loaded nodes are receivers, others are senders
sender-initiated with new job selection policy
Location policy:

probe random receiver
if still receiver (below the threshold), transfer the job
otherwise try another

Luděk Matyska · Distributed Systems · Spring 2024 34 / 39

Issues Examples Scheduling/Load-balancing in Distributed Systems

Scheduling/Load-balancing in DSs – Case study
Sprite (Berkeley) I.

Centralized information policy: coordinator keeps info
state-change driven information policy
Receiver: workstation with no keyboard/mouse activity for the
defined time period (30 seconds) and below the limit (active
processes < number of processors)

Selection policy: manually done by user ⇒ workstation becomes
sender
Location policy: sender queries coordinator
the workstation with the foreign process becomes sender if user
becomes active

Luděk Matyska · Distributed Systems · Spring 2024 35 / 39

Issues Examples Scheduling/Load-balancing in Distributed Systems

Scheduling/Load-balancing in DSs – Case study
Sprite (Berkeley) II.

Sprite process migration:
facilitated by the Sprite file system
state transfer:

swap everything out
send page tables and file descriptors to the receiver
create/establish the process on the receiver and load the
necessary pages
pass the control

the only problem: communication-dependencies
solution: redirect the communication from the
workstation to the receiver

Luděk Matyska · Distributed Systems · Spring 2024 36 / 39

Issues Examples Scheduling/Load-balancing in Distributed Systems

Scheduling/Load-balancing in DSs
Process Migration

A transfer of a process from one environment/machine to
another
Two types

Non-preemptive – process is moved before the execution started
Preemptive – process is moved during the execution

process = code + data + stack

We also speak about weak and strong mobility, resp.
key reasons: performance and flexibility
flexibility:

dynamic configuration of distributed system
clients don’t need preinstalled software (download on demand)

Luděk Matyska · Distributed Systems · Spring 2024 37 / 39

Issues Examples Scheduling/Load-balancing in Distributed Systems

Scheduling/Load-balancing in DSs
Process Migration in Heterogenous Systems

In general, only weak mobility is supported in common systems
(recompile code, no run time information)
Hiding the heterogeneity

Interpreters (scripting languages)
Programming language oriented virtual machines (e.g. Java)
Full virtual machines

These approaches can support preemption even in heterogenous
environment

Luděk Matyska · Distributed Systems · Spring 2024 38 / 39

Conclusion

Lecture overview
Distributed Systems

Key characteristics
Challenges and Issues
Distributed System Architectures
Inter-process Communication

Middleware
Remote Procedure Calls (RPC)
Remote Method Invocation (RMI)
Common Object Request Broker Architecture (CORBA)

Service Oriented Architecture (SAO)

Web Services

Issues Examples
Fault Tolerance in Distributed Systems
Replication in Distributed Systems
Transactions in Distributed Systems
Scheduling/Load-balancing in Distributed Systems

Conclusion

Luděk Matyska · Distributed Systems · Spring 2024 39 / 39

	Distributed Systems
	Key characteristics
	Challenges and Issues
	Distributed System Architectures
	Inter-process Communication

	Middleware
	Remote Procedure Calls (RPC)
	Remote Method Invocation (RMI)
	Common Object Request Broker Architecture (CORBA)

	Service Oriented Architecture (SAO)
	Web Services
	Issues Examples
	Fault Tolerance in Distributed Systems
	Replication in Distributed Systems
	Transactions in Distributed Systems
	Scheduling/Load-balancing in Distributed Systems

	Conclusion

