Computer organization and design ffffi. The Hardware/Software Interface ^hr& Chapter 3 Arithmetic for Computers Arithmetic for Computers Operations on integers . Addition and subtraction . Multiplication and division . Dealing with overflow Floating-point real numbers . Representation and operations Chapter 3 —Arithmetic for Computers — Integer Addition Example: 7 + 6 0 (Carries) . . . (0) 0 (0) 0 (0) 1 (1) 1 (1) 0 (0) 1 Overflow if result out of range . Adding +ve and -ve operands, no overflow . Adding two +ve operands . Overflow if result sign is 1 . Adding two -ve operands Overflow if result sign is 0 M 14 ® Chapter 3 —Arithmetic for Computers Integer Subtraction Add negation of second operand Example: 7-6 = 7 + (-6) +7:0000 0000 ... 0000 0111 =6: 1111 1111 ... 1111 1010 +1: 0000 0000 ... 0000 0001 Overflow if result out of range ■ Subtracting two +ve or two -ve operands, no overflow ■ Subtracting +ve from -ve operand Overflow if result sign is 0 ■ Subtracting -ve from +ve operand . Overflow if result sign is 1 Chapter 3 —Arithmetic for Computers — 4 Dealing with Overflow Some languages (e.g., C) ignore overflow . Use MIPS addu, addui, subu instructions Other languages (e.g., Ada, Fortran) require raising an exception . Use MIPS add, addi, sub instructions . On overflow, invoke exception handler . Save PC in exception program counter (EPC) register Jump to predefined handler address mf cO (move from coprocessor reg) instruction can retrieve EPC value, to return after corrective action Chapter 3 —Arithmetic for Computers — 5 Arithmetic for Multimedia Graphics and media processing operates on vectors of 8-bit and 16-bit data . Use 64-bit adder, with partitioned carry chain Operate on 8x8-bit, 4x16-bit, or 2x32-bit vectors . SIMD (single-instruction, multiple-data) Saturating operations . On overflow, result is largest representable value . c.f. 2s-complement modulo arithmetic . E.g., clipping in audio, saturation in video Chapter 3 —Arithmetic for Computers — 6 Multiplication Start with long-multiplication approach rr lultiplicand multiplier X 1000 1001 product 1000 0000 0000 1000 1001000 Length of product is the sum of operand lengths Multiplicand Shift left t 64 bits 64-bit ALU Product Write Multiplier Shift right 32 bits 64 bits 14 Chapter 3 —Arithmetic for Computers — 7 Multiplication Hardware Multiplicand Shift left 64 bits t 64-bit ALU Product Write 64 bits Multiplier Shift right 32 bits Initially 0 14 Chapter 3 —Arithmetic for Computers — 8 Optimized Multiplier Perform steps in parallel: add/shift Multiplicand 1 32 bits 32-bit ALU Shift right Product "T Write -«-V, 64 bits One cycle per partial-product addition . That's ok, if frequency of multiplications is low 14 Chapter 3 —Arithmetic for Computers — 9 Faster Multiplier Uses multiple adders . Cost/performance tradeoff Mplier31 • Mcand Mplier30 • Mcand Mplier29 • Mcand Mplier28 • Mcand Mplier3 • Mcand Mplier2 • Mcand Mplierl • Mcand MplierO • Mcand Product63 Product62 ■ ■ ■ Product47..16 . . . Productl ProductO Can be pipelined . Several multiplication performed in parallel Chapter 3 — Arithmetic for Computers — 10 MIPS Multiplication Two 32-bit registers for product . HI: most-significant 32 bits ■ LO: least-significant 32-bits Instructions . mult rs, rt / multu rs, rt . 64-bit product in HI/LO . mfhi rd / mflo rd Move from HI/LO to rd Can test HI value to see if product overflows 32 bits . mul rd, rs, rt Least-significant 32 bits of product -> rd Chapter 3 — Arithmetic for Computers — 11 Division quotient cflvidend divisor remainder 1001 1000)1001010 -1000 10 101 1010 -1000 10 n-bit operands yield n-bit quotient and remainder Check for 0 divisor Long division approach . If divisor < dividend bits 1 bit in quotient, subtract . Otherwise . 0 bit in quotient, bring down next dividend bit Restoring division . Do the subtract, and if remainder goes < 0, add divisor back Signed division . Divide using absolute values . Adjust sign of quotient and remainder as required 14 Chapter 3 — Arithmetic for Computers — 12 Division Hardware Q Start J 1. Subtract the Divisor register from the Remainder register and place the result in the Remainder register Remainder > 0 Remainder < 0 Test Remainder 2a. Shift the Quotient register to the left, setting the new rightmost bit to 1 2b. Restore the original value by adding the Divisor register to the Remainder register and placing the sum in the Remainder register. Also shift the Quotient register to the left, setting the new least significant bit to 0 3. Shift the Divisor register right 1 bit No: < 33 repetitions Initially divisor in left half Divisor Shift right 64 bits < r Quotient Shift left 32 bits Initially dividend Yes: 33 repetitions Í4 Q Done ^ Chapter 3 — Arithmetic for Computers — 13 Optimized Divider Divisor i 32 bits f Shift right Remainder Shift left Write 64 bits One cycle per partial-remainder subtraction Looks a lot like a multiplier! ■ Same hardware can be used for both 14 Chapter 3 — Arithmetic for Computers — 14 Faster Division Can't use parallel hardware as in multiplier . Subtraction is conditional on sign of remainder Faster dividers (e.g. SRT devision) generate multiple quotient bits per step . Still require multiple steps Chapter 3 — Arithmetic for Computers — 15 MIPS Division Use HI/LO registers for result . HI: 32-bit remainder - LO: 32-bit quotient Instructions . div rs, rt / divu rs, rt . No overflow or divide-by-0 checking Software must perform checks if required . Use mf hi, mf lo to access result Chapter 3 — Arithmetic for Computers — 16 Floating Point Representation for non-integral numbers . Including very small and very large numbers Like scientific notation . -2.34 x 1056 . +0.002 x 10"4 . +987.02 x 109 normalized not normalized n binary ±1.xxxxxxx2 x 2yyyy Types float and double in C 14 Chapter 3 — Arithmetic for Computers — Floating Point Standard Defined by IEEE Std 754-1985 Developed in response to divergence of representations . Portability issues for scientific code Now almost universally adopted Two representations . Single precision (32-bit) . Double precision (64-bit) Chapter 3 — Arithmetic for Computers — 18 IEEE Floating-Point Format single: 8 bits double: 11 bits single: 23 bits double: 52 bits Exponent Fraction x = (-1 )s x (1 + Fraction) x 2 S: sign bit (0 => non-negative, 1 => negative) Normalize significand: 1.0 < |significand| < 2.0 . Always has a leading pre-binary-point 1 bit, so no need to represent it explicitly (hidden bit) . Significand is Fraction with the "1." restored Exponent: excess representation: actual exponent + Bias . Ensures exponent is unsigned . Single: Bias = 127; Double: Bias = 1203 Chapter 3 — Arithmetic for Computers — 19 Single-Precision Range Exponents 00000000 and 11111111 reserved . Smallest value . Exponent: 00000001 => actual exponent - 1 - 127 = -126 . Fraction: 000...00 => significand = 1.0 . ±1.0 x 2"126 = ±1.2 x 10"38 Largest value . exponent: 11111110 => actual exponent = 254 - 127 = +127 . Fraction: 111... 11 => significand « 2.0 . ±2.0 x 2+127 = ±3.4 x 10+38 Chapter 3 — Arithmetic for Computers — 20 Double-Precision Range Exponents 0000... 00 and 1111... 11 reserved Smallest value . Exponent: 00000000001 => actual exponent = 1 - 1023 = -1022 . Fraction: 000...00 => significand = 1.0 . ±1.0 x 2"1022 « ±2.2 x 10"308 Largest value . Exponent: 11111111110 => actual exponent = 2046 - 1023 = +1023 . Fraction: 111... 11 => significand « 2.0 . ±2.0 x 2+1023 = ±1.8 x 10+308 Chapter 3 — Arithmetic for Computers — 21 Floating-Point Precision Relative precision . all fraction bits are significant . Single: approx 2~23 Equivalent to 23 x log1Q2 * 23 x 0.3 « 6 decimal digits of precision . Double: approx 2~52 Equivalent to 52 x log1Q2 ~ 52 x 0.3 ~ 16 decimal digits of precision Chapter 3 — Arithmetic for Computers — 22 Floating-Point Example Represent -0.75 . -0.75 = (-1)1 x 1.12x2"1 . S = 1 . Fraction = 1000...002 . Exponent = -1 + Bias Single: -1 + 127 = 126 = 011111102 . Double: -1 + 1023 = 1022 = 011111111102 Single: 1011111101000...00 Double: 1011111111101000...00 Chapter 3 — Arithmetic for Computers — 23 Floating-Point Example What number is represented by the single-precision float 11000000101000...00 . S = 1 - Fraction = 01000...002 - Fxponent = 100000012 = 129 x = (-1)1 x(1 +012)x2<129-127> = (-1) x 1.25 x 22 = -5.0 Chapter 3 — Arithmetic for Computers — 24 Floating-Point Addition Consider a 4-digit decimal example . 9.999 x 101 + 1.610 x 10"1 1. Align decimal points . Shift number with smaller exponent . 9.999 x 101 +0.016 x 101 2. Add significands . 9.999 x 101 + 0.016 x 101 = 10.015 x 101 3. Normalize result & check for over/underflow . 1.0015 x 102 4. Round and renormalize if necessary . 1.002 x 102 Chapter 3 — Arithmetic for Computers — 25 Floating-Point Addition Now consider a 4-digit binary example . 1.0002 x 2"1 + -1.1102 x 2"2 (0.5 + -0.4375) 1. Align binary points . Shift number with smaller exponent . 1.0002 x 2"1 +-0.1112 x 2"1 2. Add significands . 1.0002 x 2"1 +-0.1112 x 2"1 = 0.0012 x 2"1 3. Normalize result & check for over/underflow ■ 1.0002 x 2"^ with no over/underflow 4. Round and renormalize if necessary . 1.0002 x 2^ (no change) = 0.0625 Chapter 3 — Arithmetic for Computers — 26 FP Adder Hardware Much more complex than integer adder Doing it in one clock cycle would take too long . Much longer than integer operations . Slower clock would penalize all instructions FP adder usually takes several cycles . Can be pipelined Chapter 3 — Arithmetic for Computers — 27 FP Adder Hardware Sign Exponent Fraction Small ALU Exponent difference GL_L> Control Increment or decrement Sign Exponent IF IF IF IF 1 r Shift right ) * 1 -Co o Big ALU if v < ^ 1 ) Shift left or right Rounding hardware Sign Exponent Fraction Fraction Compare exponents Shift smaller number right Add Normalize Round Step 1 Step 2 Step 3 Step 4 Chapter 3 — Arithmetic for Computers — 28 Floating-Point Multiplication Consider a 4-digit decimal example - 1.110 x 1010 x 9.200 x 10"5 1. Add exponents . For biased exponents, subtract bias from sum . New exponent = 10 + -5 = 5 2. Multiply significands - 1.110 x 9.200 = 10.212 => 10.212 x 105 3. Normalize result & check for over/underflow - 1.0212 x106 4. Round and renormalize if necessary - 1.021 x 106 5. Determine sign of result from signs of operands - +1.021 x 106 Chapter 3 — Arithmetic for Computers — 29 Floating-Point Multiplication Now consider a 4-digit binary example - 1.0002 x 2"1 x -1.1102 x 2"2 (0.5 x -0.4375) 1. Add exponents . Unbiased: -1 + -2 = -3 - Biased: (-1 + 127) + (-2 + 127) = -3 + 254 - 127 = -3 + 127 2. Multiply significands - 1.0002 x 1.1102 = 1.1102 => 1.1102x2"3 3. Normalize result & check for over/underflow . 1.1102 x 2~3 (no change) with no over/underflow 4. Round and renormalize if necessary . 1.1102 x 2-3 (no change) 5. Determine sign: +ve x -ve => -ve - -1.1102 x 2"3 =-0.21875 Chapter 3 — Arithmetic for Computers — 30 FP Arithmetic Hardware FP multiplier is of similar complexity to FP adder . But uses a multiplier for significands instead of an adder FP arithmetic hardware usually does . Addition, subtraction, multiplication, division, reciprocal, square-root . FP integer conversion Operations usually takes several cycles . Can be pipelined Chapter 3 — Arithmetic for Computers — 31 FP Instructions in MIPS FP hardware is coprocessor 1 ■ Adjunct processor that extends the ISA Separate FP registers . 32 single-precision: $f0, $f1, ... $f31 . Paired for double-precision: $f0/$f1, $f2/$f3, ... . Release 2 of MIPs ISA supports 32 x 64-bit FP reg's FP instructions operate only on FP registers . Programs generally don't do integer ops on FP data, or vice versa . More registers with minimal code-size impact FP load and store instructions . lwd, ldd, swd, sdd e.g., ldd $f8, 32($sp) Chapter 3 — Arithmetic for Computers — 32 FP Instructions in MIPS Single-precision arithmetic . add.s, sub.s, mul.s, div.s . e.g., add.s $f0, $f 1, $f6 Double-precision arithmetic . add.d,sub.d, mul.d, div.d . e.g., mul.d $f4, $f4, $f6 Single- and double-precision comparison . c.xx.s, c.xx.d (xx is eq, It, le, ...) ■ Sets or clears FP condition-code bit . e.g. c.lt.s $f3, $f4 Branch on FP condition code true or false . belt, bdf . e.g., belt TargetLabel Chapter 3 — Arithmetic for Computers — 33 FP Example: °F to °C C code: float f2c (float fahr) { return ((5.0/9.0)*(fahr - 32.0)); } . fahr in $f12, result in $f0, literals in global memory space Compiled MIPS code: f2c: lwd $f16, const5($gp) lwc2 $f18, const9($gp) div.s $f16, $f16, $f18 lwd $f18, const32($gp) sub.s $f18, $f12, $f18 mul.s $f0, $f16, $f18 j r $ra Chapter 3 — Arithmetic for Computers — 34 FP Example: Array Multiplication X=X+YxZ . All 32 x 32 matrices, 64-bit double-precision elements C code: void mm (double x[][], double y[][], double z[][]) { int i, j, k; for (i = 0; i! = 32; i = i + 1) for (j = 0; j! = 32; j = j + 1) for (k = 0; k! = 32; k = k + 1) x[i][j] = x[i][j] + y[i][k] * z[k][j]; } Addresses of x, y, z in $a0, $a1, $a2, and i, j, k in $s0, $s1, $s2 Chapter 3 — Arithmetic for Computers — 35 FP Example: Array Multiplication MIPS code: li $t1, 32 # $t1 = 32 (row size/loop end) li $s0, 0 # i = 0; initialize 1st for loop L1 : li $s1, 0 # j = 0; restart 2nd for loop L2: li $s2, 0 # k = 0; restart 3rd for loop Sil $t2, $S0, 5 # $t2 — i * 32 (size of row of x) addu $t2, $t2, $s1 # $t2 = i * size(row) + j Sil $t2, $t2, 3 # $t2 = byte offset of [i][j] addu $t2, $a0, $t2 # $t2 = byte address of x[i][j] l.d $f4, 0($t2) # $f4 = 8 bytes of x[i][j] L3: Sil $to. $s2, 5 # $to — k * 32 (size of row of z) addu $to, $t0, $s1 # $to = k * size(row) + j Sil $to. $t0, 3 # $to = byte offset of [k][j] addu $to, $a2, $t0 # $to = byte address of z[k][j] l.d $f 16, 0($t0) # $f16 8 bytes of z[k][j] Í4 Chapter 3 — Arithmetic for Computers — 36 FP Example: Array Multiplication Sil $t0, $s0, 5 # $t0 = i*32 (size of row of y) addu $to, $t0, $s2 # $t0 = i*size(row) + k Sil $to, $t0, 3 # $t0 = byte offset of [i][k] addu $to, $a1, $t0 # $t0 = byte address of y[i][k] l.d $f18, 0($t0) # $f18 = 8 bytes of y[i][k] mul.d $f 16, $f18, $f16 # $f16 = y[i][k] * z[k][j] add.d $f4, $f4, $f16 # f4=x[i][j] + y[i][k]*z[k][j] addiu $s2, $S2, 1 # $k k + 1 bne $s2, $t1, L3 # if (k != 32) go to L3 s. d $f4, 0($t2) # x[i][j] = $f4 addiu $s1 , $S1, 1 # $j = j + 1 bne $s1 , $t1, L2 # if (j != 32) go to L2 addiu $s0, $S0, 1 # $i = i + 1 bne $s0, $t1, L1 # if (i != 32) go to L1 14 Chapter 3 — Arithmetic for Computers — 37 Accurate Arithmetic IEEE Std 754 specifies additional rounding control ■ Extra bits of precision (guard, round, sticky) ■ Choice of rounding modes . Allows programmer to fine-tune numerical behavior of a computation Not all FP units implement all options ■ Most programming languages and FP libraries just use defaults Trade-off between hardware complexity, performance, and market requirements Chapter 3 — Arithmetic for Computers — 38 Interpretation of Data The BIG Picture Bits have no inherent meaning . Interpretation depends on the instructions applied Computer representations of numbers . Finite range and precision . Need to account for this in programs Chapter 3 — Arithmetic for Computers — 39 Associativity Parallel programs may interleave operations in unexpected orders . Assumptions of associativity may fail (x+v)+z x+(v+z) X -1.50E+38 0.00E+00 -1.50E+38 Y 1.50E+38 1.50E+38 z 1.0 1.0 1.00E+00 0.00E+00 Need to validate parallel programs under varying degrees of parallelism Chapter 3 — Arithmetic for Computers — x86 FP Architecture Originally based on 8087 FP coprocessor ■ 8 x 80-bit extended-precision registers ■ Used as a push-down stack . Registers indexed from TOS: ST(0), ST(1), ... FP values are 32-bit or 64 in memory . Converted on load/store of memory operand ■ Integer operands can also be converted on load/store Very difficult to generate and optimize code ■ Result: poor FP performance Chapter 3 — Arithmetic for Computers — x86 FP Instructions Data transfer Arithmetic Compare Transcendental F LD mem/ST(i) FIADDP mem/ST(i) FICOMP FPATAN FISTP mem/ST(i) FISUBRP mem/ST(i) FIUCOMP F2XMI FLDPI FIMULP mem/ST(i) FSTSW AX/mem FCOS FLD1 FIDIVRP mem/ST(i) FPTAN FLDZ FSQRT FPREM FABS FPSIN FRNDINT FYL2X Optional variations . I: integer operand . P: pop operand from stack . R: reverse operand order . But not all combinations allowed Chapter 3 — Arithmetic for Computers — 42 Streaming SIMD Extension 2 (SSE2) Adds 4 x 128-bit registers - Extended to 8 registers in AMD64/EM64T Can be used for multiple FP operands . 2 x 64-bit double precision . 4 x 32-bit double precision . Instructions operate on them simultaneously Single-Instruction Multiple-Data Chapter 3 — Arithmetic for Computers — 43 Right Shift and Division Left shift by / places multiplies an integer by 2' Right shift divides by 27 . Only for unsigned integers For signed integers . Arithmetic right shift: replicate the sign bit . e.g., -5/4 111110112»2 = 111111102 = -2 Rounds toward -°° . c.f. 111110112 >» 2 = 001111102 = +62 Chapter 3 — Arithmetic for Computers — Who Cares About FP Accuracy? Important for scientific code . But for everyday consumer use? . "My bank balance is out by 0.00020!" © The Intel Pentium FDIV bug . The market expects accuracy . See Colwell, The Pentium Chronicles ® Chapter 3 — Arithmetic for Computers — 45 Concluding Remarks ISAs support arithmetic . Signed and unsigned integers . Floating-point approximation to reals Bounded range and precision . Operations can overflow and underflow MIPS ISA . Core instructions: 54 most frequently used . 100% of SPECINT, 97% of SPECFP . Other instructions: less frequent Chapter 3 — Arithmetic for Computers —