
Week 09: State management in React, Auth
Filip Kaštovský

Outline
What is state management? Why do we need it?
History of state management in React
State segregat ion
Modern state management

What is state management? Why do we need it?

We don't!*

What is state management? Why do we need it?
A way to manage the state of your applicat ion (duh)
State is data that is used by your applicat ion
State management is needed because:

State is shared between components
State is updated by mult iple components
State is updated by external sources (API, user input)

History of state management in React

Pre-redux era (< 2016)
React 's self contained components were an unexplored concept
Nobody knew what they were doing
Lifting state up was a common way to share state between components

God components
Prop drilling

Emerging patterns:
Flux architecture

Redux (2016 - 2020)
Created by Dan Abramov and Andrew Clark
A simplif icat ion of the Flux architecture,
Redux introduces a single store that is the
source of t ruth for the ent ire applicat ion
State is immutable and can only be updated
by dispatching act ions
Act ions are processed by reducers, which
update the state

Redux (2016 - 2020)

type Action =

 | { type: "increment" }

 | { type: "decrement" }

 | { type: "set"; payload: number };

type State = { count: number };

function counterReducer(state = State, action: Action) {

switch (action.type) {

case "increment":

return { count: state.count + 1 };

case "decrement":

return { count: state.count - 1 };

case "set":

return { count: action.payload };

default:

return state;

 }

}

Redux (2016 - 2020)

Reducers cannot be async -> a new layer before reducers is introduced: redux middleware
in an era without async/await , async stuff was painful
redux-thunk , redux-saga , redux-observable

A lot of boilerplate

Everything is in one place (store)

Immutable updates for nested objects

Heavy!

Fundamentally changes how you write your app

Large ecosystem of libraries and tools for almost everything

React Context API (> 2019)

React 's built-in state management solut ion

Grew to popularity with hooks

Declare a context and insert it into the component t ree:

const MyContext = React.createContext(defaultValue);

<MyContext.Provider value={value}>

<MyComponent />

</MyContext.Provider>

Anything inside of value can be accessed via a useContext(MyContext) hook

React Context API (> 2019)
You can put useState values and funct ions in the context , sharing them between components

const [state, setState] = useState(initialState);

const value = useMemo(() => ({ state, setState }), [state]);

<MyContext.Provider value={value}>

<MyComponent />

</MyContext.Provider>

But , remember how react re-renders components?

The above is a very bad idea for global state management

Sidetrack: useReducer
useReducer is a hook that is similar to useState , but it allows you to manage more complex state

uses the same reducer pattern as redux

const [state, dispatch] = useReducer(reducer, initialState);

const reducer = (state: State, action: Action) => {

switch (action.type) {

case "increment":

return { count: state.count + 1 };

case "decrement":

return { count: state.count - 1 };

case "set":

return { count: action.payload };

default:

return state;

 }

};

Antipattern: Poor mans redux
You can combine useReducer and
useContext to create a poor mans redux in

like 10 lines of code

DO not do this, this is not a replacement for
redux (or any other state management
solut ion)

Change of perspective: State segregation

Rather then t reat ing all of our applicat ion state as global and one big pile of data handled by a
generic manager, use specialized tools for specialized tasks

There is no need to reinvent the wheel!

Form data? Use react-hook-form

API? Use Tanstack Query

Rout ing? Use react-router

Local state? Use useState / useReducer

Local state across mult iple components? Use useContext

???

What else do we need to t rack of in an app?

State segregation

There is nothing left ! We have covered all of the state management needs of our applicat ion.

Almost ... (theme, current user, etc.)

Most of the t ime, you will not need a global state management solut ion anymore

Modern state management
Ideal state is:

handle all state updates outside of React (it is bad at it , wants to re-render everything)
only not ify and update components that are interested in the state change

Composable state (atoms)

Composable state (atoms)
Originally a react core team's idea, now implemented as Recoil

const countState = atom({

key: "countState",

default: 0,

});

function Counter() {

const [count, setCount] = useRecoilState(countState);

return <div>{count}</div>;

}

Recoil is a bloated library for what it provides, jotai is a much better implementat ion

https://recoiljs.org/
https://recoiljs.org/
https://recoiljs.org/
https://jotai.org/
https://jotai.org/
https://jotai.org/

Signals

Observer pattern for state management , int roduced by solid-js

By far the most performant solut ion for state management!

Backported to react as @preact/signals-react

https://www.solidjs.com/
https://www.solidjs.com/
https://www.solidjs.com/

Auth

Outline
Access control
AuthN vs AuthZ
Common auth patterns
Auth in Express
Auth on the frontend
Security considerat ions

Access control
Only allow access to resources to authorized users
Different users have different permissions

User level access: only the resource owner can access the resource
Role-based access control: users are assigned roles, roles have permissions
Rules, policies, etc...

AuthN vs AuthZ
Authent icat ion (AuthN) is the process of verifying the ident ity of a user
Authorizat ion (AuthZ) is the process of verifying that the user has the necessary permissions to access a
resource

Easy to mix up, but they are different things
AuthN and AuthZ are often handled together (Auth / AA) by an applicat ion

Common auth patterns

Basic auth
Username and password
Sent in the Authorization header
Base64 encoded

Authorization: Basic QWxhZGRpbjpvcGVuIHNlc2FtZQ==

Not secure, use encrypted connect ions
Some clients allow encoding the password in the URL

smtp://username:password@server:587

Token based auth
A client authent icates with a server and receives a token
The token is then used for subsequent requests

SessionID

Create a unique session ID for
each successful authent icat ion

Store it a database

Send it to the client

Client sends it back with each
request

Overhead of storing sessions
'somewhere' , stateful

API keys
Used for authent icat ing against an external API
Can be of any format

Generally considered insecure
? Principle of least privilege
Rotate keys often

JWT

JSON Web Token

Self-contained, signed token

Contains claims (data) about the
user

Cryptographically signed with a
given expiry

jwt .io

Invalidat ion/revoking

https://jwt.io/

OAuth2/OpenID Connect
OAuth2 is an authorizat ion framework
OpenID Connect is an ident ity layer on top of OAuth2
Used for single sign-on (SSO), "social login"
Allows third-party applicat ions to access resources on behalf of a user

Requires mult iple token exchanges for security
Complex, but very powerful

Pattern: Federated auth

Dedicat ing a separate service for authent icat ion and authorizat ion

Allows for more f lexibility and scalability

Allows mult iple services to authent icate against the same service!

In case of a breach, it is more diff icult to access all the users' data

Allows you to use an off the shelf solut ion, reducing the risk of introducing vulnerabilit ies

Auth in Express
passport.js is a middleware for Express that handles session management

app.post("/login/password", passport.authenticate("local"));

middleware

strategies

sessions

Strategies
A strategy is a way to authent icate a user
Over 500 strategies available!

For local username/password authent icat ion:

npm install passport-local

OpenID Connect :

 npm install passport-openidconnect

Sessions
Passport also contains connectors for session management

express-session

app.use(

session({

 secret,

 })

);

app.use(passport.session());

internally uses cookies

But wait? Where do I store the token for token-based auth?

HTTP cookies

both sides (client and server) are allowed to read and write them (most of the t ime)

Usually the server sets a cookie with the token

Logout can be done by delet ing the cookie

sett ing the cookie as httpOnly prevents client-side JS from reading it

Headers
The token can be sent in the Authorization header (just as with basic auth)

Authorization: Bearer <token>

This header is then read by the server, but has to be sent by the client .

Here, the client has to manage the token

Local storage, session storage...

Security considerations

XSS

Cross-Site Script ing

Attacker injects malicious scripts into a website and can get access to cookies, session tokens, etc.

CSRF

Cross-Site Request Forgery
Forces authent icated users to submit a request to a Web applicat ion against which they are
current ly authent icated

Mit igat ion: CSRF tokens

Password storage and validation

Never store passwords in plaintext !

Always use a secure hashing algorithm (argon2, scrypt , bcrypt)

Salt ing

Hashing:

const hash = await argon2.hash(..);

try {

if (await argon2.verify("<big long hash>", "password")) {

// password match

 } else {

// password did not match

 }

} catch (err) {

// internal failure

}

Rate limiting

Prevents brute force attacks

Limits the number of requests a user can make in a given t ime frame

Protects underlying infrastructure

For sensit ive endpoints, require the user to solve a challenge (captcha) to prevent automated attacks

The above doesn' t work well anymore (AI)

Web Application Firewalls
Generally a paid service. Filters out malicious t raff ic.

WAF uses a set of heurist ics and rules to determine if a request is malicious, can prompt the user to solve a
challenge if the target is a website.

OWASP

Open Web Applicat ion Security Project

A community that produces freely-available art icles, methodologies, documentat ion, tools, and
technologies in the f ield of web applicat ion security

OWASP Top 10

https://owasp.org/www-project-top-ten/

Thanks for listening!
Quest ions?

