
Week 03: CSS, layouting, BEM

1

Agenda
CSS propert ies
Selector recap
Flexbox vs grid
BEM revisited
Normalizat ion
Modern CSS checklist
Hands on: Live coding

2

Let's start!

3

Main CSS properties: divided by purpose

Display: Whether the element is t reated as a block/inline block and the layout used for its children

Background: solid colors, gradient , images, posit ioning, repet it ion

Box model: width and height , padding and margin, border color, style, and width

Posit ioning: left , right , top, and bottom, z-index

Typography: color, font-size, -family, -weight , line-height , text-align, -t ransform

Transit ions

Animat ions

Flex parents: f lex-direct ion, -wrap, (-f low), align-items, just ify-content

Flex children: f lex-basis, -grow, -shrink, order

Grid parents: grid-template-rows, -template-columns, -template-areas, -column/row-gap, ...

Grid children: -column-start and -end (-column shorthand), dit to for column, ...

4

Property reference
CSSreference.io
MDN

5

https://cssreference.io/
https://developer.mozilla.org/en-US/docs/Web/CSS/Reference

Selector recap - CSS selector game
https://f lukeout .github.io/

Can you reach level 17?

6

https://flukeout.github.io/

Flexbox and grid

Which one to use? It depends

Flexbox is useful for one-dimensional layouts
Can change orientat ion based on viewport width
Order of children can change as well
Easy to dist ribute and align space between elements

Grid is better suited for two-dimensional layouts
Essent ially behaves like a table

Grid can be used (and it is preferred to do so) for more complex one dimensional layouts. Great example is
the complete mobile page layout where you need to posit ion a header, navbar, main content , footer... The
transit ion between the mobile and desktop layouts is easier when you start with the 1D grid layout on the
mobile, and expand it into 2D on the desktop.

7

Understanding flex properties

For parent : f lex-direct ion, f lex-wrap, align-items, just ify-content , align-content

For items: align-self , f lex-grow, f lex-shrink, f lex, order

Interact ive examples

Flexbox froggy game

8

https://codepen.io/enxaneta/full/adLPwv
https://flexboxfroggy.com/

Understanding grid: part 1
Get started by defining a container:

.container {

display: grid | inline-grid;

}

9

Understanding grid: part 2
Lay out the layout :

grid-template-columns or grid-template-rows takes
Track-size (length, percentage, free space port ion fr , or auto)
Arbit rary name to label this sect ion (opt ional)

.container {

grid-template-columns: 1fr 50px 1fr 1fr;

/* One 50px column with the rest of the space distributed evenly

 between the rest of the columns */

}

10

Understanding grid: part 2.5
Lines between rows and columns can be explicit ly named (square bracket notat ion):

.container {

grid-template-columns: [first] 40px [line2] 50px [line3] auto [col4-start] 50px [five] 40px [end];

grid-template-rows: [row1-start] 25% [row1-end] 100px [third-line] auto [last-line];

}

Tip: repeating parts in column/row definition can be streamlined with repeat(n, ...)

11

Understanding grid: part 3
Define where slots start/end by referring to line numbers or names
Slots can span across mult iple t racks (span <number>) or unt il they hit a specif ic line (span <name>)

.item {

grid-column-start: <number> | <name> | span <number> | span <name> | auto;

grid-column-end: <number> | <name> | span <number> | span <name> | auto;

grid-row-start: <number> | <name> | span <number> | span <name> | auto;

grid-row-end: <number> | <name> | span <number> | span <name> | auto;

}

grid-column: a b = shorthand for grid-column-start: a and grid-column-end: b
dit to for rows

12

Understanding grid: part 4
Assign "grid areas" to items
Define layout on grid element
Dots signify empty cells

.item-a {grid-area: header}

.item-b {grid-area: main}

.item-c {grid-area: sidebar}

.item-d {grid-area: footer}

.container {

display: grid;

grid-template-columns: 50px 50px 50px 50px;

grid-template-rows: auto;

grid-template-areas:

"header header header header"

"main main . sidebar"

"footer footer footer footer";

}

13

14

Congratulations on understanding CSS Grid!
For more thorough explanat ions, refer to the Complete Grid Guide.

For an interact ive game, visit Grid garden.

15

https://css-tricks.com/snippets/css/complete-guide-grid/
https://cssgridgarden.com/

Let's talk BEM

16

Block
An independent page component that can and should be reused
Its name describes its purpose (button), not its appearance (not red, not big)
Blocks can be nested in each other

<!-- form - BEM `search-form` *block*, also uses a generic `form` *block* -->

<!-- which can be reused for all HTML forms -->

<form class="search-form form">

<!-- input - BEM *element* of the `search-form` block: `search-form__input` -->

<!-- also uses a generic `input` *block*, which can be reused for all HTML inputs -->

<input class="search-form__input input">

<!-- button - BEM *element* in the `search-form` block: `search-form__button` -->

<!-- also uses a generic `button` *block* which can be reused for all HTML buttons -->

<button class="search-form__button button">Search</button>

</form>

17

Element
A semant ic part of a block, unable to stand on its own
Separated from the block name with a double underscore (block-name__element-name)
Can be nested, but only the outermost block is projected into element name (so never
block__elem1__elem2)

When to use a block and when an element?

If a sect ion of code might be reused & it doesn' t depend on other page components being implemented
=> block
If a sect ion of code can' t be used separately without the parent ent ity => element
When a reusable part of code is also used within a context of another block => it can be both element
and a block

example: code on the previous slide; the button can have generic reset styles within the button
class (BEM block), and specif ic styles such as posit ioning and specif ic size in the search-form block.
These are specif ic only for that context and are specif ied in the search-form__button class (BEM
element)

18

Modifier
Defines the appearance, state or behavior of its parent (block or element)
Separated with a double hyphen (block-name--modifier)
Can never be used alone (is semant ically t ied)

<!-- The `search-form` block has the `focused` Boolean modifier -->

<form class="search-form search-form--focused form">

<input class="search-form__input input">

<!-- The `button` element has the `disabled` Boolean modifier -->

<button

class="search-form__button search-form__button--disabled button"

disabled>

 Search

</button>

</form>

19

Normalization
Sometimes, each browser has some default styles, which can lead to UI inconsistencies
We can load normalize.css f irst , followed by our own styles
Do not attempt to create your own normalizat ion. Use the well-developed versions available on GitHub:
for example (51 .6k stars): github.com/necolas/normalize.css
The benefit of normalizat ion is reduced CSS "debugging"
Some libraries, like TailwindCSS, already normalize CSS under the hood

20

file:///builds/pb138/materials/week-03/seminar/github.com/necolas/normalize.css

Modern CSS checklist
I normalize the default styles for my page with some kind of a normalizer
I've designed the layout and styles with the mobile-f irst approach
I am using CSS variables defined in the root for colours, border-radius padding...
I am using simple selectors (HTML element selectors such as h1 , id selectors (#desired-id), class
selectors (.classname)) whenever possible
I order my CSS selectors in the order: reset selectors / classes, generic reusable classes, layout / style
specif ic classes
I t ry to avoid using px and % for margins and paddings
I use em or rem for sizes and variables most of the t ime
I use computat ion in CSS with calc , min , max and other value funct ions
I use media queries for the layout changes depending on the viewport changes
I have split my CSS into mobile and desktop f iles
I condit ionally load my desktop CSS
I write my CSS simple, stupid
I am reusing components (in BEM terminology "blocks") whenever it is possible
OPTIONAL: I 've defined a light and dark mode for my page

21

Live coding: let's make a layout and styles according to a design
together!
The Figma design

22

https://www.figma.com/file/q5EL4kGODUPeWuBaAbFHrU

Questions?

23

Question: When will we finally get the first iteration?

Answer: It will be assigned on March 10
The iterat ion will require you to know HTML semant ics, layout ing & styling, a lit t le bit of TypeScript and some
Storybook knowledge. The Storybook lecture will be held during week four, so you will get an instruct ions
video to be able to start working on the iterat ion prior to the Storybook lecture. We felt we could not release
the iterat ion prior to the TypeScript lecture, so that 's the reason the f irst iterat ion is to be released third
week into the semester.

24

