
Week 06: REST API, OpenAPI, Redis

1

Agenda

> GET /info/agenda

> Host: tutor.pb138

< HTTP/1.1 200

< Content-Type: text/markdown;charset=utf-8

< Server: Tutor

<

< # Seminar outline

<

< - Prerequisites

< - HTTP methods

< - HTTP response status codes

< - REST API modelling activity

< - Express.js

< - Runtime validation with Zod

< - OpenAPI

< - Demo

< - REST, Swagger, Redis repository

2

Prerequisites
Working Docker/Podman
A redis:latest Docker image (either you already have it pulled as per email, or you can pull it now,
before we start working)
As usual, a working Node.js installat ion

3

HTTP methods in the context of REST - a quick recap
Method Use-case

GET Obtain a resource from the server

POST Submit data (resource) to the server

PUT Replace a resource on the server

PATCH Replace a part of the resource on the server

DELETE Delete a resource from the server

Requests can be

Safe: Not altering the state of the server at all (all safe requests are also idempotent).
Idempotent : Making one request results in the same f inal effect as making mult iple requests of the same
kind. (Example: One DELETE of an exist ing resource results in the resource being deleted, if the client has
the credent ials. Mult iple DELETE requests of the same resource with proper credent ials also result in the
resource being deleted, even though from the second request onwards the HTTP status code changes)
Unsafe: Making the request changes the state of the server, or creates some side effects.

4

HTTP response status codes - an even quicker recap
When designing an API, your API communicates not only with the data you send, but also with HTTP status
codes. To ensure the correct behaviour of the apps that consume your API (might be only your app, but also
some general scraping tools that rely on status codes), you must use correct status codes to indicate the
status in response to the request the client has made.

Status
code Use-case

200 Generic way to say that the request succeeded

201 Resource created

204 The operat ion was successful and did not retrieve data

301 The resource has moved somewhere else

307, 308 Redirect responses

400 Client has made a bad request

401 Not authorized for this operat ion

403 Not allowed to proceed with the operat ion with current authent icat ion

500 Generic error on the server-side (usually don' t want to reveal more informat ion than
absolutely necessary)

For more informat ion, visit Mozilla documentat ion of the HTTP response status codes. Also, there is an
elaborate list of cat images explaining different HTTP response status codes. 5

https://developer.mozilla.org/en-US/docs/Web/HTTP/Status
https://http.cat/

Let's learn by modelling an e-commerce API
Imagine a situat ion, where you model an API for an e-commerce website, such as alza.cz. What resources
does the site have? Focus on the user part . Discuss in groups of three to four people.

Ident ify resources
What methods will the API expose over those resources and what URIs will exist??

Hint: Imagine the website, think about the main features that the user can do with the web app,
t ransform them into operat ions on resources

Let 's name the resources according to the methodology presented in the lecture and create routes for
them

6

https://alza.cz/

7

Let's learn by modelling an e-commerce API
What routes have you created? What HTTP methods have you used? Your tutor(s) might also reveal their
solut ion.

8

Potential solution
Note: this solut ion is not complete, it 's just a hint at how the API could be designed. We will work with a
slight ly modif ied version of this during the demo.

Resources
product

Products also have some addit ional resources: photo s, review s, etc.
category

user

. . .

Routes & Methods
/products - GET with query parameters as f ilters
/product - POST for creat ing a new product
/product/{productId} - GET for product detail; PUT, DELETE for product administrat ion
/categories - GET for gett ing all categories
/category - POST for creat ing a new category
/category/{categoryIdentifier} - GET subcategories of the category; PUT, DELETE - for category

administrat ion

... and we could go on unt il we have the fully working backend.
9

Express.js - a Web Application Framework
A Node.js framework that allows quickly building web applicat ions and REST APIs with Node.js
Provides a very minimal, precise set of tools necessary for creat ing web applicat ions
Used by many other JS/TS frameworks as their backbone

10

https://expressjs.com/

Express.js - Install

npm i express

TypeScript support:

npm i -D @types/express

11

https://expressjs.com/

Adding Express to the code

import express, { Express, Request, Response } from 'express';

const app: Express = express();

const port = 8080;

app.listen(port, () => {

console.log(`Server is running at https://localhost:${port}`);

});

12

Express - middlewares,
routes and controllers

13

Express - middlewares
The data is f irst ly processed by a pipeline of funct ions called middlewares
These funct ions can, for example, check privileges or handle things that need to happen to every request
before it is processed individually

const app: Express = express();

/* Middlewares: */

api.use(express.json());

api.use(express.urlencoded({ extended: true }));

14

Express - middlewares

15

Express - routes (routers)
The request then gets processed via a router
Router routes the requests. It defines the f low of individual requests

// this import happens at the beginning of our project root file (typically `index.ts`)

import { productRouter } from './product/router';

api.use('/product', productRouter);

16

Express - routes (routers)

17

Express - routes (routers) and controllers
Each route has an assigned controller - a funct ion that processes the request individually

// './product/router' file where the `productRouter` is defined

import { Router } from 'express';

import { productControllers } from './controllers';

export const productRouter = Router();

const productSpecificRouter = Router();

/* post for `/product` router */

productRouter.post('/', productControllers.post);

/* get, put/patch, delete for `/product/productId` router */

productRouter.use('/:productId', productSpecificRouter);

productSpecificRouter.get('/', productControllers.get);

productSpecificRouter.put('/', productControllers.edit);

productSpecificRouter.patch('/', productControllers.edit);

productSpecificRouter.delete('/', productControllers.delete);

18

Express - controllers
The controller then provides the logic for handling of the specif ic request

// './product/controllers/' file where `productControllers` is defined

const get = (req: Request, res: Response) => {

/* The logic is defined here. Calls to the database, parsing query params,

 error handling, sending responses etc. */

};

/* ... rest of the file */

export const productControllers = {

 get,

 set,

/* ... */

};

19

Express - controllers
Note: The response of a controller should be fast.
In case an expensive operation is triggered, the
system should create a "session" and the client
should then poll the status of the task via periodic
requests to the session id endpoint

General rule: The quicker the response, the better
the UX of the client is.

20

Runtime validation
Problem: During runt ime of our applicat ion, we expect the HTTP bodies (within the REST context) to contain
objects with well-defined structure. We might help ourselves by defining types to work with these objects in
TypeScript . This works, if the shape of the data we receive matches the type we have defined. If it does not ,
our applicat ion crashes on accessing undefined propert ies... How can we solve this issue?

type ProductCreateData = {

name: string,

description: string,

};

// within a controller:

const data: ProductCreate = req.body;

// we want to use the object properties for something, pass it to the DB repository, etc.

console.log(data.description);

// ^ Our app might crash here as we cannot be sure this property exists!!!

Solut ion: We import a well writ ten runt ime validat ion library with full TypeScript support like zod(preferred) or
yup, and we create schemas for the objects we want to use!

21

https://www.npmjs.com/package/zod
https://www.npmjs.com/package/yup

Runtime validation - zod schema + validation
If the parsing returns success, the data we put to the validator was checked during runt ime and passed the
validat ion. Now, TypeScript also knows it can rely on the exact shape of the data the schema specif ied. We
can now safely pass this data to the rest of the applicat ion, for example to the database repository, or a
funct ion which executes some form of calculat ion. Amazing, isn' t it?

import z from 'zod';

// define object schema, possibly with additional restrictions on the types

const ProductCreateSchema = z.object({

name: z.string().min(4),

description: z.string().min(20),

}).strict();

export type ProductCreateData = z.infer<typeof ProductCreateSchema>;

// usage within a controller (async version was used, as this can be computationally heavy and we don't want a blocking operation):

const validationResult = await ProductCreateSchema.safeParseAsync(req.body);

if (!validationResult.success) {

// handle the error and use early return, you now have the `.error` property available

return res.status(400).send({ error: validationResult.error });

}

// handle the success where `validationResult.data` exists, which is now typesafe (has type `ProductCreateData`)!

const { data } = validationResult;

await productRepository.create(data);

// and continue with the business logic of your controller

22

Open API - documentation, documentation, documentation
Documentat ion is the key for every API consumer. What is not documented is unknown, especially once the
project grows in scale. OpenAPI documentat ion solves this by:

Providing a standardized way of writ ing documentat ion for APIs
Allowing developers to easily document their API:

Routes & Methods
Expected data within request bodies/headers
API consumer input condit ions (what goes into request bodies, query parameters, etc.)
Potent ial responses from the API

Allowing consumers of the API to understand it without seeing the internals

Most of the t ime the implementat ion of the API you consume is private -> government APIs, corporate APIs,
closed-source services. You might not have the permission to look into the source code of a product even
within your company.

23

Adding Swagger documentation into your project
Adding the OpenAPI documentat ion tools is as easy as adding these few dependencies for your express
project : swagger-ui-express , yaml

npm i swagger-ui-express yaml

And adding them to your Express applicat ion

import express, { Express } from 'express';

import swaggerUi from 'swagger-ui-express';

import fs from 'fs';

import yaml from 'yaml';

const api: Express = express();

const documentationFile = fs.readFileSync('../docs/swagger.yml');

const swaggerDocument = yaml.parse(documentationFile);

/* Add the api-documentation endpoint */

api.use('/api-documentation', swaggerUi.serve, swaggerUi.setup(swaggerDocument));

24

Get inspired by the demo!
The demo applicat ion already has the documentat ion complete and exposed for you. You can see how to
write the documentat ion, and how to embed swagger within your express.js applicat ion.

25

Run the demo application - start Redis
Our demo applicat ion connects to a Redis service. The applicat ion uses a database repository*, which allows
us to persistent ly store data. We will use the repository as a "blackbox" - we input data and retrieve the data
from the repository. The repository hides all the implementat ion details of communicat ion with the Redis
service.

docker run -d --name redis -p 6379:6379 redis

* You will learn how to create database repositories (and the whole idea behind this design pattern) later
during the course. For now, we will learn how to consume the repositories to load and store data within a
database solution of choice.

26

Run the demo application
We're now able to start the applicat ion.

install dependencies if you have not already

npm i

run the api in watch mode - the express app will keep refreshing on changes

npm start

Go to http://localhost :6001/api-documentat ion to see the documentat ion.

27

http://localhost:6001/api-documentation

Live coding: Implement the REST API an e-commerce site
The OpenAPI docs we made provide you with all informat ion necessary to create the e-commerce API. Let 's
start !

(The demo is available in the interactive syllabus)

28

Testing the API during
development - Bruno
There are many tools that you can use to test
your APIs, even your web browser is a very
powerful one. For a more robust development
experience, you might want to look into Bruno,
which is an open-source tool for test ing REST APIs.
The Free version covers everything you' ll need in
the context of this course (and more). It even has
a VSCode extension!

You might have heard about Insomnia or
Postman. These solut ions t ransit ioned into paid
services (SaaS) in recent years and the user
base has started to shift away from them. A
version of Insomnia that some people started
to use instead is Insomnium - a privacy-
oriented fork of Insomnia.

29

https://www.usebruno.com/
https://insomnia.rest/download
https://www.postman.com/downloads/
https://github.com/ArchGPT/insomnium

Questions?

30

