
Week 07: ERD, modeling, Prisma basics

1

Agenda
Modeling exercises
From model to database schema
Creat ing simple queries with Prisma and seeding the database

2

PlantUML
PlantUML is a tool for creat ing UML diagrams through plain text language, enabling easy version control and
sharing. It supports various diagram types, including ER Diagrams.

3

@startuml lab07-diagram

hide circle

skinparam Linetype ortho

entity ServerMessage {

 * id: <<uuid>>

 * content: string

 * sent_at: datetime

 * edited: bool

}

entity Channel {

 * id: <<uuid>>

 * name: string

 * permissions: enum

}

entity Server {

 * id: <<uuid>>

 * name: string

 * logo: <<url>>

}

ServerMessage |o..|| ServerMessage: replies_to

Server ||..o{ Channel

Channel ||..o{ ServerMessage

@enduml 4

Useful links
Online editor
VSCode extension
JetBrains extension

(The extensions require a working Java installat ion)

5

https://www.planttext.com/
https://marketplace.visualstudio.com/items?itemName=jebbs.plantuml
https://plugins.jetbrains.com/plugin/7017-plantuml-integration

Database modeling: Level 1
Design a database model for a f itness tracker appl ication using PlantUML. This appl ication aims to
help users monitor their f itness routines, dietary intake, and progress towards their health goals.
Your database should include the fol lowing entities, at a minimum:

User: Represents the users of the f itness tracker app.
Activity: Records various activit ies that users can perform, such as running, swimming,
cycling, etc.
Food: Details the dietary intake of the users - meals and their nutrit ional values.
Goal: Sets f itness or dietary goals that users aim to achieve - weight , muscle mass, etc.

6

Think about
What types of relat ionships will you use? (one-to-one, one-to-many, many-to-many)
What att ributes will the ent it ies have?
Which of the att ributes will be required?

7

Example solution

User

id: «uuid»

email: string

name: string

dateOfBirth: date

Activity

id: «uuid»

type: enum

duration: int

caloriesBurned: int

performedAt: datetime

Food

id: «uuid»

name: string

calories: int

protein: decimal

carbs: decimal

fat: decimal

consumedAt: datetime

Goal

id: «uuid»

description: string

weight: decimal

muscleMass: decimal

fatPercentage: decimal

targetDate: date

8

Discussion
Tracking Progress Over Time: Suppose the applicat ion needs to support t racking users' progress over
t ime, such as weight changes or improvements in act ivity performance. How would you adjust the
diagram to accommodate this funct ionality? Would you add new ent it ies, att ributes, or relat ionships?

Reward System: Suppose the applicat ion wants to mot ivate users by implement ing a reward system
based on achieving goals. What adjustments or addit ions to the diagram would be needed to support
this?

9

Database modeling: Level 2
Let's raise the complexity a bit. Design a database model for an e-commerce platform. Your
model should facil itate core e-commerce functional ities, including product l istings, user accounts,
orders, and payment processing. Your database should include the fol lowing entities, at a
minimum:

User: Customer accounts on the e-shop platform.
Product: Items available for purchase.
Order: Records of purchases made by users.
OrderItem: Individual items within an order.
Payment: Payment information and status.
Category: Product categorization.
Review: User-submitted product reviews.
ShippingAddress: Information about shipping addresses.

10

Think about
What types of relat ionships will you use? (one-to-one, one-to-many, many-to-many)
What att ributes will the ent it ies have?
Which of the att ributes will be required?
What data types will you use for the att ributes?
What cardinality should the relat ionships have?

11

Example solution

User

id: «uuid»

email: string

name: string

password: string

Product

id: «uuid»

name: string

description: string

price: decimal

Order

id: «uuid»

date: datetime

shippingStatus: enum

OrderItem

id: «uuid»

quantity: int

itemPrice: decimal

Payment

id: «uuid»

amount: decimal

method: enum

paymentStatus: enum

Category

id: «uuid»

name: string

Review

id: «uuid»

rating: int

text: string

ShippingAddress

id: «uuid»

address: string

addressDetails: string

city: string

postalCode: string

12

Discussion

Product price: The price of the product is stored both in the Product and OrderItem ent it ies. Is this a
good design choice? Why or why not?

Modeling Hierarchical Categories:
Current ly, our model does not explicit ly support a hierarchical category structure, such as subcategories
within categories. How could you adjust the Category ent ity to allow for this hierarchy?

13

Converting your diagram into a Prisma schema
First ly, init ialize Prisma & TypeScript in a blank Node.js project

npm i -D typescript prisma @types/node tsx

Then init ialize TypeScript & Prisma in your project

npx tsc init

npx prisma init

14

Converting your diagram into a Prisma schema
Set up a script in the package.json f ile which will start up our code f ile with these arguments:

{

// ...

"scripts": {

"start": "tsx seed/seed.ts",

},

// rest of the file ...

}

Now, convert your ERD into a Prisma schema. If you' re stuck, you can look into the documentat ion here.

15

https://www.prisma.io/docs/orm/prisma-schema

Run your database and migrations
First , let 's start up the database

docker run --detach -e POSTGRES_USER=user -e POSTGRES_PASSWORD=password \

 -e POSTGRES_DB=database -p 5432:5432 --name pb138-seminar-07-database postgres:latest

Now, set the correct credent ials in your .env f ile

DATABASE_URL="postgresql://user:password@localhost:5432/database"

Make sure your Prisma schema is ready for migrat ion! Afterward, you can run your migrat ion with:

npx prisma migrate dev --name 'name of your migration'

And you can look into your database with:

npx prisma studio

16

Create a simple seeding script
Create a folder seed/ and in it , create the f ile seed.ts
Paste the following code block into it :

import { PrismaClient } from '@prisma/client'

const client = new PrismaClient();

async function seed() {

// ... you will write your seeding logic here

}

seed()

 .then(async () => {

await client.$disconnect()

 })

 .catch(async (e) => {

console.error(e)

await client.$disconnect()

 process.exit(1)

 });

Create the seeding logic. But ... Where do you obtain data?
17

Now for the seeding part
Seed the database with @faker-js/faker package!

npm i -D @faker-js/faker

Look into the documentat ion to see how to use this library.

Seed the database with simple Prisma queries you should be familiar with from the lecture (nested
create or createMany). If not , also look in the Prisma documentat ion - create & createMany.

18

https://fakerjs.dev/guide/usage.html#create-complex-objects
https://www.prisma.io/docs/orm/reference/prisma-client-reference#create
https://www.prisma.io/docs/orm/reference/prisma-client-reference#createmany

Stopping the postgres container
To stop the postgres container, run the following:

docker stop pb138-seminar-07-database

To remove:

docker rm pb138-seminar-07-database

19

That's it for today!

20

