
Week 10 - Auth

Auth

Quick recap

We generally don' t want to give access to all users to all parts of our applicat ion

Authent icat ion x Authorizat ion

There are many ways to authent icate users
Passwords
Magic links
OIDC

We will focus on the simplest token based authent icat ion: SessionID

Auth with SessionID

A user logs in
We generate a unique SessionID for them and store it somewhere
We send the SessionID to the user somehow

Auth with SessionID

Where do we store the SessionID ?

Requirements:
Secure (Only the server should be able to read it)
Fast (We will be accessing this value a lot , disk access is slow, should be memory based)
(Opt ional) Dist ributed (We might need to be able to access it from mult iple servers)

Auth with SessionID

How do we send the SessionID to the user and maintain the session?

Requirements:
Portability (Should work with the majority of clients)
Security (Should not be easily accessible by other websites or malicious scripts)
(Opt ional) Persistence (Should survive browser restarts)
(Opt ional) Expirat ion (Should not be valid forever)
(Opt ional) Ease of use

HTTP Cookies

A cookie is a small piece of data stored on the client 's computer by the web browser while browsing a
website

Can set the following attributes:
Secure - Only send over HTTPS
HttpOnly - Cannot be accessed by JavaScript
SameSite - Prevents the browser from sending the cookie along with cross-site requests
Domain - The domain the cookie is valid for
Path - The path the cookie is valid for
Expires - The expirat ion date of the cookie
Max-Age - The maximum age of the cookie in seconds

Auth with SessionID (express-session)

A middleware for Express.js
Creates and maintains sessionids for you
Can store the sessionid in memory, in a database or in a cache (like Redis)

app.use(

session({

secret: "keyboard cat",

resave: false,

saveUninitialized: false,

cookie: { secure: false, httpOnly: true }, // secure: false => http (not https), always us

store: new RedisStore({ client: redisClient, prefix: "x-session:" }),

 })

);

Auth with SessionID (passport)

An auth framework for Node.js
Handles authent icat ion strategies

passport-local - Local username and password
passport-jwt - JWT
openid-client - OpenID Connect

... (many more)

passport.use(

new LocalStrategy((username, password, done) => {

// Fetch the user (from db or cache)

// Check if the user exists and the password is correct

if (!user) {

return done(null, false, { message: "Incorrect username or password." });

 }

// Check if the password is correct

if (isValidPassword(user.password, password)) {

return done(null, false, { message: "Incorrect username or password." });

 }

return done(null, user);

 })

);

Password storage

Never store passwords in plain text !
Use secure hashing algorithms like bcrypt or argon2 (not SHA, despite the name, lookup tables exist)
Always use a salt (already included in bcrypt and argon2)

const hash = await argon2.hash("password");

// $argon2i$v=19$m=16,t=2,p=1$czhaaERxODRwZnFNaEFjbg$+eV7nw2kAE27VXgZL7+dSg

If possible, t ry not to manage passwords yourself or be very careful

- Errors in password management are very costly

Protecting routes

Use middleware to protect routes

const protected = (req, res, next) => {

if (isRequestAuthorized(req)) {

next();

 } else {

 res.status(401).send("Unauthorized");

 }

};

app.get("/protected", protected, (req, res) => {

 res.status(200).send("Protected route");

});

On the frontend
With cookies, server manages the session. You don' t have to do anything on the frontend! (almost)

Maybe just redirect the user to the login page if they are not authorized

Open source project shill
Insomnium - https://github.com/ArchGPT/insomnium

A simple API test ing tool, fork of Insomnia

https://github.com/ArchGPT/insomnium

Time to code!

JWT

JSON Web Tokens (JWT) are an open, industry standard RFC 7519 method for represent ing claims
securely between two part ies.

Explore JWTs at jwt .io

JWTs do not need server side storage

Instead of using sessionids, t ry to refactor your code to use JWTs instead with passport-jwt
If you have t ime, t ry incorporat ing a third party authent icat ion provider like Google, Facebook or GitHub
for sign ins

https://jwt.io/

On the frontend

You will need to store the JWT in the browser
You can use localStorage , sessionStorage or cookies again

With a JWT pair (access token and refresh token), you can implement a refresh token mechanism.

Access token is short lived (minutes)

Refresh token is long lived (days)

When a request fails due to expired token, use the refresh token to get a new access token and retry the
request

That's it!

What, you managed to finish this seminar in time?

State management

State management

There are different types of state in an applicat ion
Local state
Data fetching state (data, loading, error)
Form state (input values, errors)
Rout ing state (current route, params)
... not much left

State management

For each of those, we have a specialized tool:
Local (or kindof local) state: useState , useReducer , useContext
Data fetching state: @tanstack/react-query
Form state: react-hook-form
Rout ing state: react-router-dom

General rule of thumb: Use the simplest tool that gets the job done

In the past , all-in-one solut ions like Redux were popular, but they are not necessary anymore (and
cumbersome to use)

State management

But for whatever is left , we can use jotai !

https://jotai.org/
https://jotai.org/
https://jotai.org/

Jotai

Composable state management library for React
based on atoms
derived state through atoms/selectors (based on lib)
extremely performant!

Primitive atoms

import { atom } from "jotai";

const countryAtom = atom("Japan");

const citiesAtom = atom(["Tokyo", "Kyoto", "Osaka"]);

const animeAtom = atom([

 {

title: "Ghost in the Shell",

year: 1995,

watched: true,

 },

 {

title: "Serial Experiments Lain",

year: 1998,

watched: false,

 },

]);

Derived atoms

const progressAtom = atom((get) => {

const anime = get(animeAtom);

return anime.filter((item) => item.watched).length / anime.length;

});

Derived atoms are updated when the atoms they depend on change

Atom extensions

import { atomWithStorage } from "jotai/utils";

// Set the string key and the initial value

const darkModeAtom = atomWithStorage("darkMode", false);

Large number of extensions available

In React

Just use a hook, anywhere!

const Input = () => {

const [text, setText] = useAtom(textAtom);

const handleChange = (e) => setText(e.target.value);

return <input value={text} onChange={handleChange} />;

};

That's it! (for real this time)

