Week 10 - Auth

Auth

e We generally don't want to give access to all users to all parts of our application
e Authentication x Authorization

e There are many ways to authenticate users
o Passwords
o Magic links
o OIDC

We will focus on the simplest token based authentication: SessionID

Auth with SessionID

e A userlogsin
o We generate a unique SessionID for them and store it somewhere
o We send the SessionID to the user somehow

Where do we store the SessionID ?

e Requirements:
o Secure (Only the server should be able to read it)
o Fast (We will be accessing this value a lot, disk access is slow, should be memory based)
o (Optional) Distributed (We might need to be able to access it from multiple servers)

How do we send the SessionID to the user and maintain the session?

e Requirements:
o Portability (Should work with the majority of clients)
o Security (Should not be easily accessible by other websites or malicious scripts)
o (Optional) Persistence (Should survive browser restarts)
o (Optional) Expiration (Should not be valid forever)
o (Optional) Ease of use

e A cookie is a small piece of data stored on the client's computer by the web browser while browsing a
website

e Can set the following attributes:
o Secure - Only send over HTTPS
o HttpOnly - Cannot be accessed by JavaScript
o SameSite - Prevents the browser from sending the cookie along with cross-site requests
o Domain - The domain the cookie is valid for
o Path - The path the cookie is valid for
o Expires - The expiration date of the cookie
o Max-Age - The maximum age of the cookie in seconds

Auth with SessionID (express-session)

e A middleware for Express.js
e Creates and maintains sessionids for you
e Can store the sessionid in memory, in a database or in a cache (like Redis)

app.use(
session({
secret: "keyboard cat",
resave: false,
saveUninitialized: false,
cookie: { secure: false, httpOnly: true }, // secure: false => http (not https), always us
store: new RedisStore({ client: redisClient, prefix: "x-session:" }),

)

Auth with SessionID (passport)

e An auth framework for Node.js
e Handles authentication strategies
o passport-local - Localusername and password
o passport-jwt - JWT
o openid-client - OpenID Connect
o ... (many more)

passport.use(
new LocalStrategy((username, password, done) => {
// Fetch the user (from db or cache)

// Check if the user exists and the password is correct
if (luser) A{
return done(null, false, { message: "Incorrect username or password." });
}
// Check if the password is correct
if (isValidPassword(user.password, password)) {
return done(null, false, { message: "Incorrect username or password." });

}

return done(null, user);

)

Password storage

e Never store passwords in plain text!
e Use secure hashing algorithms like bcrypt or argon2 (not SHA, despite the name, lookup tables exist)
e Always use a salt (alreqdy included in bcrypt and argon2)

const hash = await argon2.hash("password");
// $argon2i$v=19$m=16, t=2, p=1$czhaaERxODRwZnFNaEFjbg$+eV7nw2kAE27VXgZL 7+dSg

If possible, try not to manage passwords yourself or be very careful

- Errors in password management are very costly

Protecting routes

e Use middleware to protect routes

const protected = (req, res, next) => {
if (isRequestAuthorized(req)) {
next();
} else A
res.status(401).send("Unauthorized");
}
s

app.get("/protected", protected, (req, res) => {
res.status(200).send("Protected route");

});

On the frontend

With cookies, server manages the session. You don't have to do anything on the frontend! (almost)

e Maybe just redirect the user to the login page if they are not authorized

Open source project shill

Insomnium - https://github.com/ArchGPT/insomnium

e A simple API testing tool, fork of Insomnia

https://github.com/ArchGPT/insomnium

Time to code!

e JSON Web Tokens (JWT) are an open, industry standard RFC 7519 method for representing claims
securely between two parties.

e Explore JWTs at

e JWTs do not need server side storage

Instead of using sessionids, try to refactor your code to use JWTs instead with passport-jwt
If you have time, try incorporating a third party authentication provider like Google, Facebook or GitHub

for sign ins

https://jwt.io/

e You will need to store the JWT in the browser
e You can use localStorage, sessionStorage or cookies again

With a JWT pair (access token and refresh token), you can implement a refresh token mechanism.

e Access token is short lived (minutes)

e Refresh token is long lived (days)

e When a request fails due to expired token, use the refresh token to get a new access token and retry the
request

That's it!

What, you managed to finish this seminar in time?

State management

State management

e There are different types of state in an application
o Local state

o

Data fetching state (data, loading, error)

o

Form state (input values, errors)

o

Routing state (current route, params)

o

... hot much left

e For each of those, we have a specialized tool:

Local (or kindof local) state: useState, useReducer, useContext
Data fetching state: @tanstack/react-query

Form state: react-hook-form

o

o

o

o Routing state: react-router-dom

General rule of thumb: Use the simplest tool that gets the job done

In the past, all-in-one solutions like Redux were popular, but they are not necessary anymore (and
cumbersome to use)

State management

e But for whatever is left, we can use jotai!

https://jotai.org/
https://jotai.org/
https://jotai.org/

e Composable state management library for React
o based on atoms
o derived state through atoms/selectors (based on lib)
o extremely performant!

Primitive atoms
import { atom } from "jotai";

const countryAtom = atom("Japan");

const citiesAtom = atom(["Tokyo", "Kyoto", "Osaka"l);

const animeAtom = atom([
{
title: "Ghost in the Shell",
year: 1995,
watched: true,
,
{

title: "Serial Experiments Lain",
year: 1998,
watched: false,
,
D;

Derived atoms

const progressAtom = atom((get) => {
const anime = get(animeAtom);
return anime.filter((item) => item.watched).length / anime.length;

});

Derived atoms are updated when the atoms they depend on change

Atom extensions

import { atomWithStorage } from "jotai/utils";

// Set the string key and the initial value
const darkModeAtom = atomWithStorage("darkMode", false);

Large number of extensions available

In React

e Just use a hook, anywhere!

const Input = () => {
const [text, setText] = useAtom(textAtom);

const handleChange = (e) => setText(e.target.value);
return <input value={text} onChange={handleChange} />;

F;

That's it! (for real this time)

