Week 11: Docker, App Deployment

Agenda

e Docker

* Packaging a SPA

* Packaging an Express API
e Container orchestration
e Container registries

* Open source container client and runtime

* Allows you to package an application and its
dependencies into a container

Docker allows you to kindof ship your machine
to your clients

* Recap: Containers vs VMs

Docker architecture

Docker CLI

Compose

Security

1)

Hardware

Docker API

Content Trust and
Verification

Network

containerd

Build

Authentication

Volumes

RUNC

m Windows

Cloud

Integrated Lifecycle
Management

Docker

Container runtime

OCI

0S

Infrastructure

Building a SPA

e Usually just npm run build
e Qutputs minified and bundled: .html, .css, .js

Try it! Setup a project via npm create vite
Then run npm run build, inspect the dist folder

HTTP server

* We need a web server to serve the static files
* Express can do that: express.static middleware

e BUT: Dedicated high-performance servers are a better
choice

NginXx

e High-performance, open-source web server

* Very versatile, can be used as an app gateway, reverse
proxy, load balancer, etc.

* Very good at serving static files, requires next to none
resources

Users

Datacenter

App Servers

m

Nginx Conf

* Nginx is configured via an nginx.conf file
* Alot of options! Visit nginx.com for examples

* Here's a simple example:

events {
worker_connections 1024;

by

http {

server {
listen 80;

location / {
root /www/data;

Takes a directory /www/data and serves it on port 80

https://www.nginx.com/resources/wiki/start/topics/examples/full/

user nginx;
worker_processes auto;

error_log /var/log/nginx/error.log warn;

pid /var/run/nginx.pid;
events {

worker_connections 1024;
¥
http {

include /etc/nginx/mime.types;
default_type application/octet-stream;
keepalive_timeout 65;

sendfile on; # static site serving
gzip on; # enable compression

server {
listen 80;
server_name _,;
root /usr/share/nginx/html;
try_files $uri $uri.ntml $uri/index.html /index.htmi;
index index.htmi;

location ~ /\.ht {
deny all; # create a rule to deny access to .ht files

Dockerfile

* A Dockerfile is a script that contains a collection of commands and instructions that will be automatically executed in sequence in the
docker environment for building a new docker image

e Given you have locally built the SPA in the dist folder, you can create a Dockerfile like this:

FROM nginx:alpine
COPY nginx.conf /etc/nginx/nginx.conf
COPY dist /usr/share/nginx/html

EXPOSE 80
CMD ["nginx", "-g", "daemon off;"]

docker build -t my-nginx . builds the image, tags it as my-nginx

And then:

docker run -d -p 8086:80 my-nginx runs the container on port 8086

10

Building an Express API

e Slightly more complex

o With SPA, we are "only" giving static files to a ready-made server
* Here we need to make one:

© We need nodejs and npm

© We need to install node dependencies

11

Dockerfile

* Basic Dockerfile for an Express API:

FROM node:latest
WORKDIR /app

COPY . /app

RUN npm install

EXPOSE 3000
CMD ["tsx", "src/index.ts"] # tsx is an alternative to ts-node

Note: Docker layers - each command creates a new layer, which can be cached and can be reused by later builds

Try running docker build multiple times!

12

Dockerfile

The previous example has a few issues:

* using mutable tags such as latest is not recommended, you never know what you get
© use a version tag instead

COPY . /app copies everything, including local node_modules
o use .dockerignore to exclude files
e npm install is run every time any of the files change
o better utilize Docker layers to cache dependencies
o COPY package*.json and npm install before copying sources
e container runs as root
© use USER to switch to a non-root user
* base image is huge
o use alpine or slim versions (if possible)

13

Dockerfile

Try improving the Dockerfile based on the previous slide!

Use some express BE project you have lying around. Or quickly spin up a new one.
npm init -y
npm install express

npm install typescript tsx

echo "console.log('Hello, world!')" > src/index.ts

14

Dockerfile

FROM node:20.11.1-alpine

Add package files and install
COPY package.json package-lock.json
RUN npm ci

Copy sources
COPY src ./src
COPY tsconfig.json ./tsconfig.json

EXPOSE 3000
CMD ["tsx", "src/index.ts"]

v

15

Docker - Image size

e Docker images can get quite large and are often passed around via network or stored in registries
© consumes bandwidth and storage
* |t is a good practice to keep the image size as small as possible

NodedJS - Production image

* A project generally contains a lot of things unnecessary for production
o developer tooling (typescript, nodemon, etc.), general devDependencies
© tests, documentation, etc.

* A build step can be used to create a production-ready image

e The way to do this is via a multi-stage build

16

Multi-stage build

FROM node:20.11.1-alpine as base
Add package file and install

COPY package.json package-lock.json ./
RUN npm ci

Copy sources
COPY src ./src
COPY tsconfig.json ./tsconfig.json

Build the project into the dist folder (tsc --outDir dist’ in this case)
RUN npm run build

Start production image build

FROM node:20.11.1-alpine

Install production dependencies

COPY package.json package-lock.json ./

RUN npm ci --production

COPY --from=base /dist /dist # Copy the built project

EXPOSE 3000
CMD ["node","dist/src/index.js"] # This will vary based on your project

Monorepos

18

Monorepos

* Monorepos are a common way to manage multiple projects in a single repository
e They are especially useful for microservices, where you have multiple services that share common code
* They can be a bit tricky to work with, especially in a Docker environment

Turbo

* Monorepo tool created by Vercel
e Simplifies the process of working with monorepos
e Try it out! npm create turbo
© Look around! Try running the apps, change the code, etc.

19

Dockerizing a monorepo

* Usually tool specific, with a detailed guide on how to do it
* Turbo has a nice way of handling this

https://turbo.build/repo/docs/handbook/deploying-with-docker

e Try it out!

20

https://turbo.build/repo/docs/handbook/deploying-with-docker

Container orchestration

2]

Container orchestration

e Docker is great for running a single container

e But what if you have multiple containers?
© How do you manage them?
© How do you scale them, run multiple instances?
© How do you ensure they are always running?

22

Container orchestration (docker-compose)

e Docker-compose is a tool for defining and running multi-container Docker applications
* |t uses a docker-compose.yml file to configure your application’s services

* |t can be used to define and run multi-container Docker applications

23

Docker-compose

e A simple docker-compose.yml file:

version: "3"
services:
web:
build: . # build the image from the Dockerfile in the current directory
ports:
- "8080:8080"
environment:
- REDIS_URL=redis://redis:6379
redis:
image: "redis:alpine"

Creates two services: web and redis

24

Docker-compose (added DB)

version: "3"
services:
web:
build: . # build the image from the Dockerfile in the current directory
ports:
- "8080:8080"
environment:
- REDIS_URL=redis://redis:6379
- POSTGRES_URL=postgres://postgres:postgres@postgres:5432/mydb

redis:
image: "redis:alpine"
postgres:
image: "postgres:alpine"
environment:

- POSTGRES_USER=postgres
- POSTGRES_PASSWORD=postgres
- POSTGRES_DB=mydb
volumes:
- mydata:/var/lib/postgresql/data

volumes:
mydata:

Docker-compose (useful commands)

e docker-compose up starts the services
e docker-compose down stops the services
e docker-compose up -d starts the services in the background

e docker-compose logs shows the logs of the services

26

Docker (useful features recap)

e Volumes
o Persist data between container restarts
© Bind mounts
= Mount host directories into containers
= Useful for development

* Networks
© Connect containers together
* Environment variables
©o Pass configuration to containers
* Port mappings
© Expose container ports to the host

e Bind mounts
© Mount host directories into containers

27

Container orchestration (Kubernetes)

e Compose is great for development, but not that much for production
o It lacks many features needed for production, has bare necessities though
© Cannot run on multiple machines
* Kubernetes is an industry standard container orchestration system that can manage containers across multiple hosts

There is also Docker Swarm or Hashicorp Nomad, both simpler, but less powerful

28

Container registries

* Docker images are stored in registries
e Docker Hub is the most popular one

© Public and private repositories
e Gitlab has its own registry

Try it out! Push any of your locally built images to faculty registry

docker tag my-nginx gitlab.fi.muni.cz:5050/my-nginx
docker login gitlab.fi.muni.cz:5050
docker push gitlab.fi.muni.cz:5050/my-nginx

https://www.fi.muni.cz/tech/unix/gitlab/ci.html.en#registry

29

https://www.fi.muni.cz/tech/unix/gitlab/ci.html.en#registry

Thats all folks!

30

