Week 11: Docker, App Deployment



Agenda

e Docker

* Packaging a SPA

* Packaging an Express API
e Container orchestration
e Container registries



* Open source container client and runtime

* Allows you to package an application and its
dependencies into a container

Docker allows you to kindof ship your machine
to your clients

* Recap: Containers vs VMs




Docker architecture
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Building a SPA

e Usually just npm run build
e Qutputs minified and bundled: .html, .css, .js

Try it! Setup a project via npm create vite
Then run npm run build, inspect the dist folder



HTTP server

* We need a web server to serve the static files
* Express can do that: express.static middleware

e BUT: Dedicated high-performance servers are a better
choice

NginXx

e High-performance, open-source web server

* Very versatile, can be used as an app gateway, reverse
proxy, load balancer, etc.

* Very good at serving static files, requires next to none
resources
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Nginx Conf

* Nginx is configured via an nginx.conf file
* Alot of options! Visit nginx.com for examples

* Here's a simple example:

events {
worker_connections 1024;

by

http {

server {
listen 80;

location / {
root /www/data;

Takes a directory /www/data and serves it on port 80


https://www.nginx.com/resources/wiki/start/topics/examples/full/

user nginx;
worker_processes auto;

error_log /var/log/nginx/error.log warn;

pid /var/run/nginx.pid;
events {

worker_connections 1024;
¥
http {

include /etc/nginx/mime.types;
default_type application/octet-stream;
keepalive_timeout 65;

sendfile on; # static site serving
gzip on; # enable compression

server {
listen 80;
server_name _,;
root /usr/share/nginx/html;
try_files $uri $uri.ntml $uri/index.html /index.htmi;
index index.htmi;

location ~ /\.ht {
deny all; # create a rule to deny access to .ht files



Dockerfile

* A Dockerfile is a script that contains a collection of commands and instructions that will be automatically executed in sequence in the
docker environment for building a new docker image

e Given you have locally built the SPA in the dist folder, you can create a Dockerfile like this:

FROM nginx:alpine
COPY nginx.conf /etc/nginx/nginx.conf
COPY dist /usr/share/nginx/html

EXPOSE 80
CMD ["nginx", "-g", "daemon off;"]

docker build -t my-nginx . builds the image, tags it as my-nginx

And then:

docker run -d -p 8086:80 my-nginx runs the container on port 8086
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Building an Express API

e Slightly more complex

o With SPA, we are "only" giving static files to a ready-made server
* Here we need to make one:

© We need nodejs and npm

© We need to install node dependencies
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Dockerfile

* Basic Dockerfile for an Express API:

FROM node:latest
WORKDIR /app

COPY . /app

RUN npm install

EXPOSE 3000
CMD ["tsx", "src/index.ts"] # tsx is an alternative to ts-node

Note: Docker layers - each command creates a new layer, which can be cached and can be reused by later builds

Try running docker build multiple times!
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Dockerfile

The previous example has a few issues:

* using mutable tags such as latest is not recommended, you never know what you get
© use a version tag instead

COPY . /app copies everything, including local node_modules
o use .dockerignore to exclude files
e npm install is run every time any of the files change
o better utilize Docker layers to cache dependencies
o COPY package*.json and npm install before copying sources
e container runs as root
© use USER to switch to a non-root user
* base image is huge
o use alpine or slim versions (if possible)
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Dockerfile

Try improving the Dockerfile based on the previous slide!

Use some express BE project you have lying around. Or quickly spin up a new one.
npm init -y
npm install express

npm install typescript tsx

echo "console.log('Hello, world!')" > src/index.ts
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Dockerfile

FROM node:20.11.1-alpine

# Add package files and install
COPY package.json package-lock.json
RUN npm ci

# Copy sources
COPY src ./src
COPY tsconfig.json ./tsconfig.json

EXPOSE 3000
CMD ["tsx", "src/index.ts"]

v
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Docker - Image size

e Docker images can get quite large and are often passed around via network or stored in registries
© consumes bandwidth and storage
* |t is a good practice to keep the image size as small as possible

NodedJS - Production image

* A project generally contains a lot of things unnecessary for production
o developer tooling (typescript, nodemon, etc.), general devDependencies
© tests, documentation, etc.

* A build step can be used to create a production-ready image

e The way to do this is via a multi-stage build
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Multi-stage build

FROM node:20.11.1-alpine as base
# Add package file and install

COPY package.json package-lock.json ./
RUN npm ci

# Copy sources
COPY src ./src
COPY tsconfig.json ./tsconfig.json

# Build the project into the dist folder ( tsc --outDir dist’ in this case)
RUN npm run build

# Start production image build

FROM node:20.11.1-alpine

# Install production dependencies

COPY package.json package-lock.json ./

RUN npm ci --production

COPY --from=base /dist /dist # Copy the built project

EXPOSE 3000
CMD ["node","dist/src/index.js"] # This will vary based on your project



Monorepos
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Monorepos

* Monorepos are a common way to manage multiple projects in a single repository
e They are especially useful for microservices, where you have multiple services that share common code
* They can be a bit tricky to work with, especially in a Docker environment

Turbo

* Monorepo tool created by Vercel
e Simplifies the process of working with monorepos
e Try it out! npm create turbo
© Look around! Try running the apps, change the code, etc.
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Dockerizing a monorepo

* Usually tool specific, with a detailed guide on how to do it
* Turbo has a nice way of handling this

https://turbo.build/repo/docs/handbook/deploying-with-docker

e Try it out!
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https://turbo.build/repo/docs/handbook/deploying-with-docker

Container orchestration
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Container orchestration

e Docker is great for running a single container

e But what if you have multiple containers?
© How do you manage them?
© How do you scale them, run multiple instances?
© How do you ensure they are always running?
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Container orchestration (docker-compose)

e Docker-compose is a tool for defining and running multi-container Docker applications
* |t uses a docker-compose.yml file to configure your application’s services

* |t can be used to define and run multi-container Docker applications
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Docker-compose

e A simple docker-compose.yml file:

version: "3"
services:
web:
build: . # build the image from the Dockerfile in the current directory
ports:
- "8080:8080"
environment:
- REDIS_URL=redis://redis:6379
redis:
image: "redis:alpine"

Creates two services: web and redis
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Docker-compose (added DB)

version: "3"
services:
web:
build: . # build the image from the Dockerfile in the current directory
ports:
- "8080:8080"
environment:
- REDIS_URL=redis://redis:6379
- POSTGRES_URL=postgres://postgres:postgres@postgres:5432/mydb

redis:
image: "redis:alpine"
postgres:
image: "postgres:alpine"
environment:

- POSTGRES_USER=postgres
- POSTGRES_PASSWORD=postgres
- POSTGRES_DB=mydb
volumes:
- mydata:/var/lib/postgresql/data

volumes:
mydata:



Docker-compose (useful commands)

e docker-compose up starts the services
e docker-compose down stops the services
e docker-compose up -d starts the services in the background

e docker-compose logs shows the logs of the services
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Docker (useful features recap)

e Volumes
o Persist data between container restarts
© Bind mounts
= Mount host directories into containers
= Useful for development

* Networks
© Connect containers together
* Environment variables
©o Pass configuration to containers
* Port mappings
© Expose container ports to the host

e Bind mounts
© Mount host directories into containers
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Container orchestration (Kubernetes)

e Compose is great for development, but not that much for production
o It lacks many features needed for production, has bare necessities though
© Cannot run on multiple machines
* Kubernetes is an industry standard container orchestration system that can manage containers across multiple hosts

There is also Docker Swarm or Hashicorp Nomad, both simpler, but less powerful
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Container registries

* Docker images are stored in registries
e Docker Hub is the most popular one

© Public and private repositories
e Gitlab has its own registry

Try it out! Push any of your locally built images to faculty registry

docker tag my-nginx gitlab.fi.muni.cz:5050/my-nginx
docker login gitlab.fi.muni.cz:5050
docker push gitlab.fi.muni.cz:5050/my-nginx

https://www.fi.muni.cz/tech/unix/gitlab/ci.html.en#registry
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Thats all folks!
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