PB173 Domain specific development: side-channel analysis

Seminar 8: Finalizing on First Steps

Łukasz Chmielewski chmiel@fi.muni.cz,

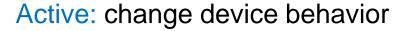
Consultation: A406 Friday 9:00-11:00

Example

USEFUL PLOTS: KEY RANK EVOLUTION

Semi-invasive attacks

- Use cpa_aes_evol.py (from seminar 7) on
- Xoodyak_FVR3000_20240214_124156.npz
- What do you think about the result?

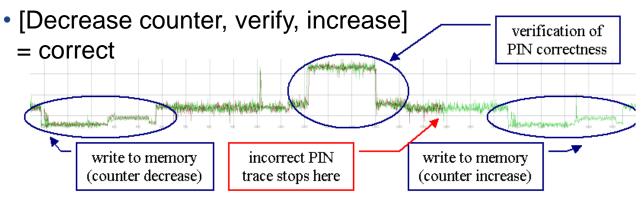


Active Side-Channel

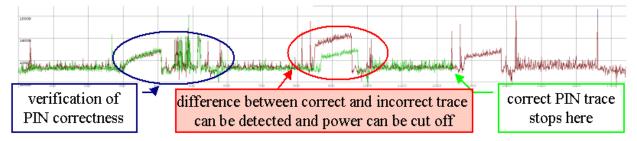
FAULT INJECTION ATTACKS

Passive vs Active Side Channels

Passive: analyze device behavior



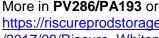
https://escooptics.com/blogs/news/world-space-week-02-lasers


Semi-invasive attacks

- "Physical" manipulation (but card still working)
- Micro probes placed on the bus
 - After removing epoxy layer
- Fault induction
 - liquid nitrogen, power glitches, light flashes...
 - modify memory (RAM, EEPROM), e.g., PIN counter
 - modify instruction, e.g., conditional jump

PIN verification procedure

[Verify, decrease/increase]



Fault induction

- Attacker can induce bit faults in memory locations
 - power glitch, flash light, radiation...
 - harder to induce targeted then random fault

- 01011010
- 10100101

- Protection with shadow variable
 - every variable has shadow counterpart
 - shadow variable contains inverse value

https://riscureprodstorage.blob.core.windows.net/production /2017/08/Riscure Whitepaper Side Channel Patterns.pdf

consistency is checked every read/write to memory

Robust protection, but cumbersome for developer

"Commercial" Example: the "unlooper" device

Differential Fault Analysis

- Would you like me to present that?
- Or do you prefer to see a real setup? Hard to fit both together.

ORGANIZATIONAL

Organization

- Group 1: Alignment
 - https://github.com/2lol555/pb173-side-channel/tree/main
 - Progress: ?
- Group 2: Parallel computations with acquisition
 - https://github.com/makuga01/pb173-sidechannels
 - Progress: ?

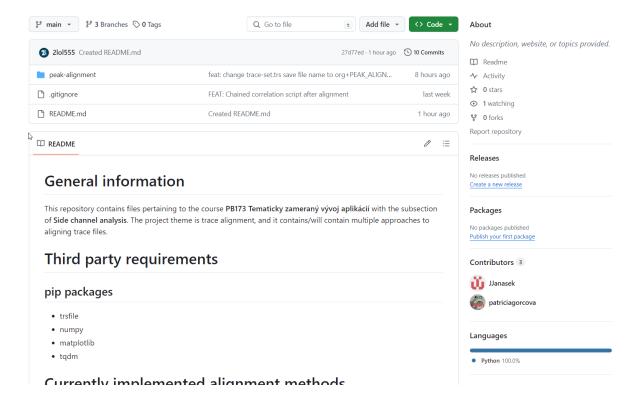
Group 1: Alignment

- Goals:
 - Peak-Based Alignment
 - Correlation-based Alignment
 - Optional: elastic versions
- Look at:
 - AES_fixed_rand_input_CAFEBABEDEADBEEF0001020304050607+SAVEEVEN(0,1000).trs
 - AES_fixed_rand_input_CAFEBABEDEADBEEF0001020304050607+SAVEEVEN(0,1000)+MIS(100).trs
- First tasks:
 - Try to align the traces mentioned above using peak-based alignment. Note that it might not work for ...MIS... traces.
 - See all the uploaded scripts till now
- Later task Correlation-based Alignment
- How is it going?

Group 2: Parallel computations with acquisition

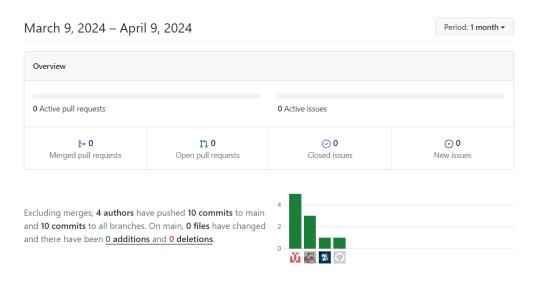
- Implement multithreaded Acquisition + Processing
- Measure Efficiency
- First Task: measure the efficiency of the acquisition (done?) Do you have some graphs?
- Later tasks: observe the impact of processing and try to add frequency processing in parallel to the acquisition
- How is it going? Have you used?
 - https://github.com/ikizhvatov/efficient-columnwise-correlation and
 - cpa_aes_evol.py (the corr. traces are also uploaded for Seminar08)

Remaining Seminars Plan

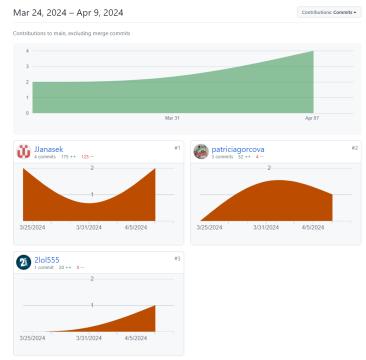

- 7: evaluation of progress on first steps: 1 point per person per work done till today also based on the commits in GIT
- 8: evaluation of finished first steps: 3 points per group (personalized per person based on the Github) + giving the next tasks
 - 9: work in progress (I will join online for some time)
- 10: 4 points per group (personalized per person based on the GitHub) + what would say about showing a more official progress presentations? Decide today.
 - This seminar: real SCA setup
- 11/12: national holiday / online consultation
- 13: final 2 points for work + 2 points for presentations + 2 points for activity, grading.

WHAT WAS DONE + GIVING NEW TASKS

Group 1: Alignment

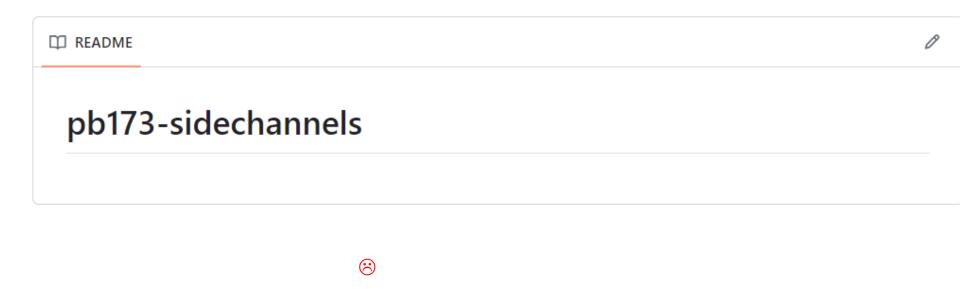


How reproducible are the installation information?



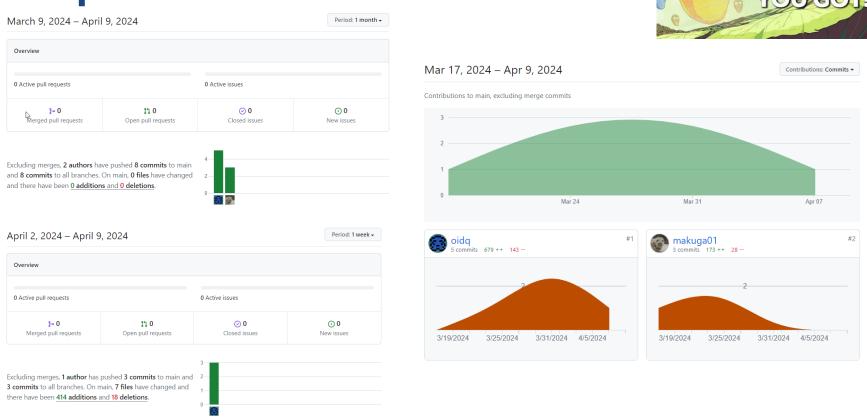
Group 1: Alignment

Explain who works on branches and 4 contributors ©



Group 1 New Tasks:

- Try to misaligned_1000 traces
- 2. Try alignment on lower peaks (local maximum peaks)
- 3. Try the Absolute Window Resample + Alignment approach
- 4. Try pattern matching as explained during the seminar
- 5. Longer term: Correlation Alignment
- From my side, computing correlation between the traces: from scipy.stats import pearsonr



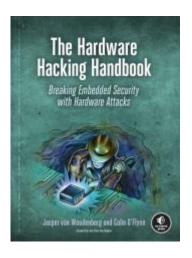
Group 2: Parallel computations with acquisition

Group 2: Parallel computations acquisition

No input last week from one participant?

Group 2 New Tasks:

- Perform analysis with jitter enabled.
- Try Spectrogram + CPA together
- 3. Perform evaluation when turning on and off various parallelizations
- Generate graphs for comparison
- From my side, I will add more ideas for extension for the next seminar. I am considering asking to add an alignment code from Group 1.



WALK-AROUND + WORKING IN GROUPS

Reading

- For interested people
- Side-Channel Analysis blue book:
 - http://dpabook.iaik.tugraz.at/
 - The books is available at the uni.
 - Look online
- The Hardware Hacking Handbook:
 - https://nostarch.com/hardwarehacking
 - I have an epub version.

