DFA on WolfSSL Ed25519

Seminar 11, PB173

Lukasz Chmielewski

CRoCS, Masaryk University, chmiel@fi.muni.cz

Part of the content is reused with permission of Lejla Batina and Ileana Buhan, Radboud University Nijmegen, The Netherlands.

May 2nd, 2024

2 [Recall on Differential Fault Analysis \(RSA\)](#page-9-0)

³ [Real-world example: fault attacks on WolfSSL](#page-12-0)

Attack categories

- Fault Injection was already partially covered on seminar 1.
- Even Differential Fault Analysis (DFA) was briefly mentioned, but I will recall it now.

Plan

1 [Introductions on Fault Attacks](#page-2-0)

[Recall on Differential Fault Analysis \(RSA\)](#page-9-0)

[Real-world example: fault attacks on WolfSSL](#page-12-0)

Attack categories

- **Side-channel attacks**
	- use some physical (analog) characteristics
	- the target is running in normal conditions
- Faults: use abnormal conditions causing malfunctions in the system
- Micro-probing: accessing the chip surface directly in order to observe, learn and manipulate the device
- **•** Reverse engineering

Types of implementation attacks

Active vs passive:

- Passive i.e. eavesdropping: the device operates within its specification
- Active i.e. tampering: the key is recovered by exploiting some abnormal behavior e.g. power glitches or laser pulses

Invasiveness:

- **A** Non-invasive aka low-cost:
	- power/EM measurements
	- Coldboot attacks: data remanence in memories cooling down is increasing the retention time
	- Rowhammer is essentially a fault attack
- Semi-invasive: the device is de-packaged but no direct contact exists with the chip e.g. optical attacks
- Invasive aka expensive: the strongest type is bus probing

Methods

- Variation in supply voltage i.e. glitching
	- Can cause a processor skip instruction
	- Actively investigated by smartcard industry
	- So-called unloopers were used to activate the infinity loop in PayTV smartcards
- Variation in the external clock: may cause data misread or an instruction miss
- **•** Change in temperature
	- The temperature threshold is defined for which the chip will work properly
	- Can cause changes in RAM content
- White light: photons induce faults
- X-rays and ion beams

Goals

- Insert computational fault
	- Null key
	- Wrong crypto result (Differential Fault Analysis DFA)
- Change software decisions
	- Force approval of false PIN
	- Reverse life cycle state PayTV and old phone cards
	- Enforce access rights
	- **Break secure boot**

Practical Fault Injection Aspects and what we concentrate on in this lecture

- Most common FI: voltage and EM (due to its price)
	- <https://github.com/newaetech/chipshouter-picoemp>
- Differential Fault Analysis (DFA)
	- We mention a few advanced recent methods that strongly relate to SCA
- **Glitching decisions:**
	- secure boot
	- obtaining memory dumps
	- enabling debug interfaces

DFA

- **Bellcore attack in 1995**
	- Differential faults on RSA-CRT signatures
	- Requires 1 correct and 1 wrong signature
- Attack on DES in 1997 by Biham and Shamir
- Special attacks on AES, ECC etc.
- Fault attacks on key transfer

DFA on cryptosystems

- Basic DFA scenario:
	- adversary obtains a pair of ciphertexts that are derived by encrypting the same plaintext (one is correct value and the other is faulty)
	- two encryptions are identical up to the point where the fault occurred
	- $\bullet \rightarrow$ two ciphertexts can be regarded as the outputs of a reduced-round iterated block cipher where the inputs are unknown but show a small (and possibly known) differential
- **O** DFA on DFS
	- the original attack of Biham and Shamir exploits computational errors occurring in the final rounds of the cipher
	- assumes that one bit of the right half of the DES internal state is flipped at a random position

Recall from seminar 1: RSA with CRT

Optimization of computing a signature giving about 4-fold speedup: $n = p \cdot q$ Signature: $s = m^d$ mod n

Pre-computed values $d_p := d \mod (p-1)$ $d_q := d \mod (q-1)$ $i_q := q^{-1} \mod p$

 $s_p := m^{d_p} \mod p$ $s_q := m^{d_q} \mod q$

Garner's method (1965) to recombine s_p and s_q : $s = s_q + q \cdot (i_q(s_p - s_q) \mod p)$

Where to glitch?

Almost anywhere :-) computations of s_p and s_q .

If error is in s_p then the adversary can recover q as follows: $q = \gcd(n, s - \hat{s})$.

CROCS

Plan

[Introductions on Fault Attacks](#page-2-0)

[Recall on Differential Fault Analysis \(RSA\)](#page-9-0)

³ [Real-world example: fault attacks on WolfSSL](#page-12-0)

Ed25519

- Instance of EdDSA, which was proposed to "fix the unnecessary requirements on randomness" in ECDSA
- Does not depend on a "good" source of randomness, but instead derives a secret deterministically (hashing the msg and a long-term auxiliary key)
- Widely adopted by TLS1.3, Zcash, SSH, Tor, Signal, WolfSSL etc. (check "Things that use Ed25519")
- Turns out to be easy to attacks in some real-world deployments i.e. WolfSSL

Niels Samwel, Leila Batina, Guido Bertoni, Joan Daemen and Ruggero Susella: Breaking Ed25519 in WolfSSL, CTRSA2018. Niels Samwel, Lejla Batina: Practical Fault Injection on Deterministic Signatures: the Case of EdDSA, Africacrypt 2018.

CRGCS

Ed25519

Algorithm 1 Ed25519 key setup and signature generation

Key setup.

- 1: Hash k such that $H(k) = (h_0, h_1, \ldots, h_{2b-1}) = (a, b)$
- 2: $a = (h_0, \ldots, h_{b-1})$, Private scalar
- 3: $b = (h_b, \ldots, h_{2b-1})$, Auxiliary key
- 4: Compute public key: $A = aB$. Signature generation.
- 5: Compute ephemeral private key: $r = H(b, M)$.
- 6: Compute ephemeral public key: $R = rB$.
- 7: Compute $h = H(R, A, M)$ and convert to integer.
- 8: Compute: $S = (r + ha)$ mod l.
- 9: Signature pair: (R, S) .

The Attack

Two signatures, original (R, S) and faulty (R', S') :

$$
S = r + ha
$$

$$
S' = r + h'a
$$

$$
S-ha=S'-h'a
$$

$$
a=\frac{S-S'}{h-h'}
$$

Setup

Results

Voltage fault injection results, Normal (green), Inconclusive (yellow), Successful (red).

Results

x-axis

Conclusion

Two real physical side-channel attacks were actually performed against Ed25519

- Side-channel analysis of Ed25519 with 4 000 traces
- Fault injection on Ed25519 with 100% success rate for EM FI and 70% for voltage glitching out of 10 000 measurements
- **•** For both attacks there exist inexpensive countermeasures

Questions

