Please comment on slides with anything unclear, incorrect or suggestions for improvement
https://drive.google.com/file/d/1DD5tgyaS8Nk Wze97 [JpVBRQhXuwgT8/view?usp=drive link

PV204 Security technologies

JavaCard optimizations, Secure Multiparty Computation and Trhreshold signatures

Petr Svenda @ svenda@fi.muni.cz E@rngsec C R ': C S
Centre for Research on Cryptography and Security, Masaryk University \*/

Centre for Research on

Cryptography and Security

(part of MPC slides done by Antonin Dufka)

www.fi.muni.cz/crocs


https://drive.google.com/file/d/1DD5tgyaS8Nk_Wze97_IJpVBRQhXuwgT8/view?usp=drive_link

BEST PRACTICES (FOR APPLET
DEVELOPERS)

https://crocs.fi.muni.cz @CRoCS_MUNI



CR®CS

Quiz

1. Expect that your device is leaking in time/power channel.
Which option will you use?
— AES from hw coprocessor or software re-implementation?
— Short-term sensitive data stored in EEPROM or RAM?
— Persistent sensitive data in EEPROM or encrypted object?
— Conditional jumps on sensitive value?

2. Expect that attacker can successfully induct faults (random
change of bit(s) in device memory).

— Suggest defensive options for applet’s source code
— Change in RAM, EEPROM, instruction pointer, CPU flags...

3 PV204 | Secure Multiparty Computation https://crocs.fi.muni.cz @CRoCS_MUNI



CR®CS ‘
@

Security hints (1)

« Use algorithms/modes from JC API rather than your own implementation
— JC API algorithms fast and protected in cryptographic hardware
— general-purpose processor leaks more information (side-channels)
« Store session data in RAM
— faster and more secure against power analysis
— EEPROM has limited number of rewrites (10*5 — 10”6 writes)
* Never store keys, PINs or sensitive data in primitive arrays
— use specialized objects like OwnerPIN and Key
— better protected against power, fault and memory read-out attacks

— If not possible, generate random key in Key object, encrypt large data with this key and store only
encrypted data

« Make checksum on stored sensitive data (=> detect faults)
— check during applet selection (do not continue if data are corrupted)
— possibly check also before sensitive operation with the data (but performance penalty)

PV204 | Secure Multiparty Computation https://crocs.fi.muni.cz @CRoCS_MUNI



CR®CS ‘
@

Security hints (2)

* Erase unused keys and sensitive arrays
— use specialized method if exists (Key.clearKey())
— or overwrite with random data (Random.generate())
— Perform always before and after start of new session (new select, new device...)

» Use transactions to ensure atomic operations

— power supply can be interrupted inside code execution

— be aware of attacks by interrupted transactions - rollback attack
* Do not use conditional jumps with sensitive data

— branching after condition is recognizable with power analysis => timing/power
leakage

PV204 | Secure Multiparty Computation https://crocs.fi.muni.cz @CRoCS_MUNI



Security hints (3)

* Allocate all necessary resources in constructor
— applet installation usually in trusted environment
— prevents attacks based on limited available resources later during applet use

* Don’t use static attributes (except constants)
— Static attribute is shared between multiple instances of applet (bypasses applet firewall)

— Static pointer to array/engine filled by dynamic allocation cannot be removed until package
is removed from card (memory “leak”)

» Use automata-based programming model
— well defined states (e.g., user PIN verified)
— well defined transitions and allowed method calls

6 PV204 | Secure Multiparty Computation https://crocs.fi.muni.cz @CRoCS_MUNI



Security hints (4)

* Treat exceptions properly
— Do not let uncaught native exceptions to propagate away from the card
* 0x6f00 emitted — unclear what caused it from the terminal side
* Your applet is unaware of the exception (fault induction attack in progress?)

— Do not let your code to cause basic exceptions like OutOfBoundsException or
NullPointerExceptions...

» Slow handling of exceptions in general

« Code shall not depend on triggering lower-layer defense (like memory
protection)

7 PV204 | Secure Multiparty Computation https://crocs.fi.muni.cz @CRoCS_MUNI



CR®CS

Security hints: fault induction (1)

Cryptographic algorithms are sensitive to fault induction

— Single signature with fault from RSA-CRT may leak the private key
— Perform operation twice and compare results

— Perform reverse operation and compare (e.g., verify after sign)

Use constants with large hamming distance

— Induced fault in variable will likely cause unknown value

— Use 0xA5 and 0x5A instead of 0 and 1 (correspondingly for more)
— Don’t use values 0x00 and Oxff (easier to force all bits to 0 or 1)

Check that all sub-functions were executed [Fault.Flow]
— Fault may force program stack or stack to skip some code

— |dea: Add defined value to flow counter inside target sub-function, check later for expected
sum. Add also in branches.

PV204 | Secure Multiparty Computation https://crocs.fi.muni.cz @CRoCS_MUNI



t\

Security hints: fault induction (2)

» Replace single condition check by complementary check
— conditionalValue is sensitive value
— Do not use boolean values for sensitive decisions

if (conditionalValue == 0x3CA5965A) { // enter critical path

/...
if (~conditionalValue = OxC35A69A5) {

faultDetect(); // fail if complement not equal to OXC35A69A5

}
// ...
}
* Verify number of actually performed loop iterations
int i;
for (i =0;i<n;i++ ) { //important loop that must be completed
//. ..
>
if (i '=n) { // loop not completed
faultDetect();

PV204 | Secure Multiparty Computation https://crocs.fi.muni.cz @CRoCS_MUNI




CR®CS

Security hints: fault induction (3)

 Insert random delays around sensitive operations
— Randomization makes targeted faults more difficult
— for loop with random number of iterations (for every run)

* Monitor and respond to detected induced faults
— If fault is detected (using previous methods), increase fault counter.

— Erase keys / lock card after reaching some threshold (~10)
» Natural causes may occasionally cause fault => > 1

10  PV204 | Secure Multiparty Computation https://crocs.fi.muni.cz @CRoCS_MUNI



CR®CS

How and when to apply protections

Does the device need protection?
Understand the resistance of the hardware
Identify potential weakness in design
Select patterns to use

Understand your compiler

Code it

Test the resistance of the device

SN R U NS SR RN

11  PV204 | Secure Multiparty Computation https://crocs.fi.muni.cz @CRoCS_MUNI



o

Execution speed hints (1)

 Big difference between RAM and EEPROM memory
— new allocates in EEPROM (persistent, but slow)
« do not use EEPROM for temporary data
« do not use for sensitive data (keys)
— JCSystem.getTransientByteArray() for RAM buffer
— local variables automatically in RAM

* Use algorithms from JavaCard API and utility methods
— much faster, cryptographic co-processor

* Allocate all necessary resources in constructor
— executed during installation (only once)
— either you get everything you want or not install at all

PV204 | Secure Multiparty Computation https://crocs.fi.muni.cz @CRoCS_MUNI



CR®CS o

Execution speed hints (2)

» Garbage collection limited or not available
— do not use new except in constructor

« Use copy-free style of methods
— foo(byte[] buffer, short start_offset, short length)

* Do not use recursion or frequent function calls
— slow, function context overhead

* Do not use OO design extensively (slow)

« Keep Cipher or Signature objects initialized

— if possible (e.g., fixed master key for subsequent derivation)
— Initialization with key takes non-trivial time

PV204 | Secure Multiparty Computation https://crocs.fi.muni.cz @CRoCS_MUNI



JCPROFILERNEXT — PERFORMANCE
PROFILING, NON-CONSTANT TIME
DETECTION

https://crocs.fi.muni.cz @CRoCS_MUNI



CR®CS

JCProfilerNext: on-card performance profiler

* QOpen-source on-card performance profiler (L. Zaoral)
— https://qgithub.com/Izaoral/JCProfilerNext

» Automatically instrumentation of provided JavaCard code
— Conditional exception emitted on defined line of code
— Spoon tool used https://spoon.gforge.inria.fr/
« Measures time to reach specific line (measured on client-side)
» Fully automatic, no need for special setup (only JavaCard + reader)

* Goals:
— Help developer to identify parts for performance optimizations
— Help to detect (significant) timing leakages
— Insert “triggers” visible on side-channel analysis
— Insert conditional breakpoints...

15  PV204 | Secure Multiparty Computation https://crocs.fi.muni.cz @CRoCS_MUNI


https://github.com/lzaoral/JCProfilerNext
https://spoon.gforge.inria.fr/

_/

/ if m_perfStop equals to stopCondition, exception is thrown (trap hit)
public static void check(short stopCondition) {
if (PM.m_perfStop == stopCondition) {

| nstru mented code (S poon) ISOException.throwlt(stopCondition);
>
by

private void example(APDU apdu) {
short count = Util.getShort(apdu.getBuffer(), ISO7816.0FFSET_CDATA);
for (shorti = 0; i < count; i++) {
short tmp = 0;
for (short k = 0; k < 50; k++) {

tmp++;

https://crocs.fi.muni.cz @CRoCS_MUNI



CR&,CS

JCProfilerNext — timing profile of target line of code

example.Example.example2(javacard.framework.APDU)

TRAP example Example example2 argb javacard framework APDU_arge 12

Card ATR: 3BFA 180000813 1FE454A434F5033315632333298
Number of rounds: 1000 Click on a bin to get a list of corresponding inputs.
APDU header: 80010000

Input regex: 00[0-9A-F]{2}
Elapsed time: 0 days 00:00:02.814

Source measurements: measurements.csv [ Show explicit traps with outliers
B without outliers
Avg ps A
1 private void example2(APDU apdu) {
2 byte[] apdubuf = apdu.getBuffer();
3 short datalen = apdu.setIncomingAndReceive();
4 // SET KEY VALUE >
5 - rr!iaislfy._sftl{f):r(ap_c_iub%.lf} E[SD?SlG.OFFSETﬁCDATA); 5
6 /7 INIT CIPHERS WITH NEW KEY S
7 m_encryptCipher.init(m_aeskey, Cipher.MODE_ENCRYPT); g
2 m_decryptCipher.init(m_aesKey, Cipher.MODE_DECRYPT); w
9 m_encryptCipher.doFinal (apdubuf, IS07816.0FFSET_CDATA, ((short) (@x1@)), m_ramArray, ((short) (2)));
10 m_decryptCipher.doFinal (apdubuf, IS07816.0FFSET_CDATA, ((short) (@x1@)), m_ramArray, ((short) (2)));
n m_hash. doF1 ;l(apdubuf, IS07816.0FFSET_CDATA, datalen, m_ramarray, ((short) (2)));
12 - F DATA - B
13 ndom. generateData(apdubuf, IS07816.0FFSET_CDATA, ((short) (2x18)));
« Il -
15 h = m_sign.sign(apdubuf, I507816.0FFSET_CDATA, ((byte) (datalen)), m_ramfrray, ((byte) (@))); 0 2,000,000 4,000,000 6,000,000 8,000,000 10,000,000
16 - ke) on-card
17 m_keyPair.genkeyPair(); Time in ps
18 m_publicKey = m_keyPair.getPublic();
19 m_privatek m_keyPair.getPrivate();
20 E: WITH PRIVATE KEY 20M
21 m_sign.init(m_privateKey, Signature.MODE_SIGN);
}
By | v
23
< > 15M
wn
=
Colour explanation E
@ 10M
E
- =
Currently selected trap Trap was never reached Trap was reached only sometimes
5M
o]
200 400 600 800 1.000

17 PV204 | Secure Multiparty Computation



CR®CS

JCProfilerNext — memory consumption

opencrypto.jcmathlib.OCUnitTests()

TRAP opencrypto_jecmathlib OCUnitTests_argb arge 6

Mode: memory
Card ATR: 3B80800101

APDU header: measured during installation . .
] . N > 2 600 transient deselect
Input: measured during installation ] .
" transient reset
Elapsed time: 0 days 00:00:00.294 .
.. 2,400 —e&— persistent
Source measurements: measurements.csv [J Show explicit traps m
c
. >, 2,200
Diff in B A 2
1 public OCUnitTests() { E 2000
2 OperationSupport.getInstance().setCard(OperationSupport.SIMULATOR);// Tt =
3 m_memoryInfo = new short[((short) (7 * 3))]1;// Contains RAM and EEPROM i Y 1 800
4 m_memoryInfoOffset = snapshotAvailableMemory(((short) (1)), m_memoryInfc E’_'
5 if (bTEST_256b_CURVE) { .
6 N m_ecc = new ECConfig(((short) (256))); 1.600 \\m
7 }
s if (bTEST_512b_CURVE) { 1,400
m_ecc = new ECConfi short 512 H
13 } - g((( ) ( M) 0 10 20 30 40
1 m_memoryInfoOffset = snapshotAvailableMemory(((short) (2)), m_memoryInfc
12 // Pre-allocate test objects (no new allocation for every tested operat: Trap ID
13 if (bTEST_256b_CURVE) {
14 m_testCurve = new ECCurve(false, SecP256rl.p, SecP256rl.a, SecP256r:
15 m_memoryInfoOffset = snapshotAvailableMemory(((short) (3)), m_memor) 32768
16 // m_testCurveCustom and m_testPointCustom will have G occasionally !
17 m_customG = new byte[((short) (SecP256rl.G.length))];
18 Util.arrayCopyNonAtomic(SecP256r1.G, ((short) (8)), m_customG, ((shc
19 m_testCurveCustom = new ECCurve(false, SecP256rl.p, SecP256rl.a, Set 32768
m 32
20 } c
o if (bTEST_512b_CURVE) { =

18  PV204 | Secure Multiparty Computation https://crocs.fi.muni.cz @CRoCS _



CR&,CS

Checking for non-constant time execution

opencrypto.jcmathlib.OCUnitTests#test BN _MOD(javacard.framework. APDU,short)
TRAP opencrypto_jcmathlib_OCTUnitTests_hash_test BN_MOD _argb_javacard_framework APDU__ short_arge 10

Mode: time
Card ATR: 3B80800101 Click on a graph item to get a list of corresponding inputs.

Number of rounds: 1000
APDU header: B0252100
Input regex: 00[0-0A-F]{64}[4-T][0-9A-F1{63}
Elapsed time: 0 days 00:58:39.803
Source measurements: measurements.csv ~| Show explicit traps 400 B low effectiveBitLength
B high effectiveBitLength
Ave s A
void test BMN_MOD(APDU apdu, short datalen) {
byte[] apdubuf = apdu.getBuffer();
short pl = ((short) (apdubuf[ISO7816.0FFSET_P1] & @xFf));
Bignat num = m_testBNI1;
num.set_size(pl);
Bignat mod = m_testBENZ;
mod.set_size(((short) (datalLen - pl)));
num.from_byte_array(pl, ((short) (@)), apdubuf, ISO7816.0FFSET_CDATA);
mod. from_byte_array(((short) (dataLen - pl)), ((short) (2)), apdubuf, 100

g

Frequency
=
[=]

L= BN I« RV IR SN RV S

9
10 num.mod (mod) ;
short len = num.copy_to_buffer(apdubuf, ((short) (2)));
1;_ apdu.setOutgoingindSend( ((short) (@)), len);
H 0
3 v 5,000 10,000 15,000 20,000
< > Time in ps
Colour explanation 20K
Currently selected trap Trap was never reached Trap was reached only sometimes
15k
n
a
£
2 10k
b=
5k

200 400 500 200 1,000
Round

19 .muni.cz




22  PV204 | Secure Multiparty Computation https://crocs.fi.muni.cz @CRoCS_MUNI



THRESHOLD CRYPTOGRAPHY
(TO REMOVE SINGLE POINT OF FAILURE)

https://crocs.fi.muni.cz @CRoCS_MUNI



https://roca.crocs.fi.muni.cz

Possibly heard of ROCA vulnerability CVE-2017-15361

M. Nemec, M. Sys, P. Svenda, D. Klinec, V. Matyas: The Return of Coppersmith’s Attack..., ACM CCS 2017

The usage domains affected by the vulnerable library | /=m0

Austria. Estonia Identity documents Trusted Platform Modules BitLocker, ChromeQOS...
Slovakié Spain : (elD, eHealth cards) (Data encryption, Platform integrity) Firmware update available
o= g
0,;(,‘7‘?7
Secure browsing
Software signing (TLS/HTTPS*)
— RSA lerary -— —
Commit signing, : - 7 ][] Very few keys, but all tied
Application signing - - 2 w® to SCADA management
GitHub, Maven... —_— Affected chip |
L P bl tca . . .
Authentication tokens Message protection rogrammable smartc Slngle p0|nt Of fallure:
R SAE/PeR [ﬁa ] Prime generation of RSA
emaito . - .
=) keygen in widely used

Yubikey 4...

YUbIkey 4 a small number of vulnerable ke Chip (1'2 bi"ion ChipS)

24 PV204 | Secure Multiparty Computation TILLNI ./ / CTULIGTLITTUTITL Ve (W LWL vivivd




CR®CS

Single point of failure

25

We already try to avoid single point of failure at many places
— Personal: dual control, people from different backgrounds...

— Technical: Load-balancing web servers, RAID, periodic backups...

— Supply chain: no reliance on single supplier...

Problems: Appropriate trade-off between security, cost and usability

Systems without single point of failure tend to be:
— More complex

— More expensive

— Less performant FEAR
— Backward incompatible L
— (not really without single point of failure)

SINGLE POINT OF FALURE

PV204 | Secure Multiparty Computation https://crocs.fi.muni.cz @CRoCS_MUNI



REMOVING SINGLE POINT OF FAILURE
IN CRYPTOGRAPHIC SIGNATURES

https://crocs.fi.muni.cz @CRoCS_MUNI



CR®CS

Secure Multi-Party Computation

« “Offload heavy computation to untrusted party while not leaking info”

(Example: h

 Amazon evaluates trained neural network on medical image (on behalf of user)
 Amazon learns neither the trained NN, nor the processed image
\’ Technology: Homomorphic encryption, garbled circuits (slow, but getting better) )

« “Distribute critical cryptographic operation among N parties”
g Example: A

« 3 devices collaboratively compute digital ECC signature
* Private key never at single place, secure unless all devices are compromised
. » Technology: purpose tailored schemes (efficient, provably secure) )

27  PV204 | Secure Multiparty Computation https://crocs.fi.muni.cz @CRoCS_MUNI

ocus of this lecture (threshold cryptography)




CR®CS

Goals of threshold cryptography

1. Remove single point of failure
— Reduce trust requirements (no single party can fail you)
— Better protect against attacks like malware (no single device with full key)
— Provide resiliency against subset compromise (k-of-n)

2. Provide fault tolerance (n-of-n vs. k-of-n)
— Perform operation with some parties not available

3. Enable different signing/decryption policies to be enforced (each party)
— Regulatory requirements (e.g., “four eyes principle”)

28  PV204 | Secure Multiparty Computation https://crocs.fi.muni.cz @CRoCS_MUNI



Yosemite Faculty Asdociation

/%/1 )
Lmre. Qq/—\ :%g«aw jm-

Threshold
Signature (MPC)

Single signature . @Multlple signatures F‘T ﬁ
- Shamir TSS _ | — |
Share 1 |

{15 3 I VAT | 2

Share 2 THIRETTI

Share 3 .
Signature Signature || Signature || Signature .lgnature

29  PV204 | Secure Multiparty Computation https://crocs.fi.muni.cz @CRoCS_MUNI



CR®CS

How to “split” key for threshold cryptography?

, Gt

* (Shamir threshold secret sharing) @1 (ot )

@ Multiple signatures

[ Signature ][ Signature ][ Signature ]

« Multiple separate signatures (same algorithm)

 Cryptographic “garden” (multiple keys, different keys) FESE B2el FREE

* n-of-n MPC signature (multiple keys, all must contribute) ‘ﬁ
— k-of-n MPC threshold signature (multiple keys, k must contribute) " #

"ignatu re

30  PV204 | Secure Multiparty Computation https://crocs.fi.muni.cz @CRoCS_MUNI



Option: Cryptographic “garde

31

7.

Electronic signature == sigh_ RSA(Srinzouvynessayg))
— Failure in RSA or SHA256 algorithm or its implementation => forgery of
signatures

RSA ECC PQC

Signhature using cryptographic “garden”
— Differently computed (algorithm) signatures over same message
— Signature = sign_ RSA+ sign_ ECC + sign_PostQuantumAlg

— Mitigate design problems of particular algorithm

Disadvantages: backward (in-)compatibility, larger storage space...

PV204 | Secure Multiparty Computation https://crocs.fi.muni.cz @CRoCS_MUNI



P

~ 19 /

TIIRETID

Threshold cryptography

Proposed already in 1987 by Y. Desmedt

Principle
— Private key split into multiple parts (“shares”)

- Shares used (independently) by separate parties during a protocol to perform
desired cryptographic operation

- If enough shares are available, operation is finished successfully
Properties
- Better protection of private key (single point of failure removed)
- Key shares can be distributed to multiple parties (independent usage condition)
- Resulting signature may be indistinguishable from a standard one (e.g., ECDSA)

Significant research progress made in the cryptocurrency context

PV204 | Secure Multiparty Computation https://crocs.fi.muni.cz @CRoCS_MUNI



CR®CS

Threshold cryptography protocols

Typically, distributed key generation is also included
- Private key is not generated on a single device

Output signatures can be indistinguishable from single party signatures
— ECDSA ([GGN16], [LN18], [GG18], [G20], [Can+20], ...)
- Schnorr (MuSig, MuSig2, FROST...)
_  RSA ([DF91], [Gen+97], [DKO1], Smart-ID...)

Various designs with different properties = ’*; re
_  Supported setups (n-of-n / k-of-n) Q_/? |— ||
- Number of communication rounds \ [ / 2
- Computation complexity i

- Security assumptions...

https://crocs.fi.muni.cz @CRoCS_MUNI


http://progress_bar_id/

PRACTICAL EXAMPLES OF MPC

34  PV204 | Secure Multiparty Computation https://crocs.fi.muni.cz @CRoCS_MUNI



Server-Supported RSA Signatures

for Mobile Devices

S m a rt-l D s i g n atu re sySte m Ahto Buldas'*™) | Ajvo Kalu', Peeter Laud!. and Mart Oruaas!

' Cyvbernetica AS. Tallinn, Estonia
ahto.buldas@cyber.ee

1 Banks in BaltiC States, >4M users * Tallinn University of Technology, Tallinn, Estonia

— Qualified Signature Creation Device (QSCD)!
Sign 3k RSA Sign 3k RSA

« Collaborative computation of signature using:
1. User’s mobile device (3072b RSA) . -H»S
2. Smart-ID service provider (3072b RSA)

« Two-party RSA signatures, threshold signature scheme

— Whole signature key never present at a single place [ ]
— Smart-ID service provider cannot alone compute valid signature

* Final signature is 6144b RSA => compatible with existing systems
— Assumed security level is equivalent to 3072b RSA (as if one party compromised)

35  PV204 | Secure Multiparty Computation https://crocs.fi.muni.cz @CRoCS_MUNI



CR®CS

MPC wallets (software, hardware)

*  Number of cryptocurrencies uses ECDSA/EADSA/Schnorr algorithm to authorize TX
— Funds are lost if private key is stolen/lost

« Multiple separate signatures by separate private keys possible (so called multisignature)

— More costly (more onchain space => higher fee)

— Privacy leaking (structure of approval)

— Not always (directly) supported (Bitcoin has IP_ CHECKMULTISIG, Ethereum needs special contract)
« MPC to compute threshold multiparty signature

— Interaction between multiple entities, single signature as a result
— Not recognizable from standard transactions on-chain

« ECDSA
— Several end-user wallets like ZenGo, Binance, Coinbase... as well as institutional custodians
— Usually one share by user, second by server

« Schnorr-based signatures easier to compute (e.g., Musig-2, FROST)
— Auvailable in Bitcoin after Taproot

36  PV204 | Secure Multiparty Computation https://crocs.fi.muni.cz @CRoCS_MUNI



https://arxiv.org/pdf/1810.04660.pdf

PY :hallenge, app ID, origin pr— - challenge, app ID il
True2F FIDO U2F tok o i
ru e o e n ; counter
§ounter - // > : >
IIII signature _/'/ signature _
Token Browser

Relying Party

* Yubikey 4 has single master key
— To efficiently derive keypairs for separate Relying parties (Google, GitHub...)
— Inserted during manufacturing phase (what if compromised?)

 Additional two MPC protocols (as protection against backdoored token)
— Verifiable insertion of browser randomness into final keypairs
— Prevention of private key leakage via ECDSA padding

- Backward-compatible (Relying party, HW) N e
- Efficient: 57ms vs. 23ms to authenticate T

Figure 1: Development board used
to evaluate our True2F prototype
(at left) and a production USB to-
ken that runs True2F (above).

37  PV204 | Secure Multiparty Computation L




CR®CS

WS API: JSON

« CaasS creates single point of
failure (SPoF)

— More risk to server
* Typically solved by HSM
« HSM becomes SPoF!

https://crocs.fi.muni.cz @CRoCS_MUNI



CR&CS  https://crocs.fi.muni. cz/papers/space2015

1U prototype:

First prototype:
Y 43+2 configuration

12+2 configuration

CryptoHive

Controller

by 7557 AR
NN
P, e

Performance:
~600 RSA-1024 signs/sec
~1200 HMAC/sec

B

39  PV204 | Secure Multiparty Computation https:/ /crocs.fl.munl.cz @CRoCS_MUNI



https://crocs.fi.muni.cz/papers/mpc_ccs17

Problem: buggy or subverted chip “UCL a} lw
\

s

- Prevention of supply chain compromise or buggy chip

« Suite of ECC-based multi-party protocols proposed
— Distributed key generation, EIGamal decryption, Schnorr signing

 Efficient implementation on JavaCards + high-speed box
« Combination with non-smartcard devices possible

40  PV204 | Secure Multiparty Computation https://crocs.fi.muni.cz @CRoCS_MUNI



https://crocs.fi.muni.cz/papers/mpc_ccs17

SmartHSM for multlparty (120 smartcards, 3 cards/quorum)

41

faTe] ] PH) »] ICE] [4C5) CICE) 2 [ F]
v 2 NRETTE @

HEl Decryption
300+ ### Signing

2504
200

150 4

50 A
- S I . A A | ya g A A
1 5 10 15 20 25 30 35 40

Quorums

Operations / Second

o
I

Figure 10: The average system throughput in relation to the
number of quorums (k = 3) that serve requests simultane-
ously. The higher is better.

PV204 | Secure Multiparty Computation

120 cards => 40 quorums
=> 300+ decrypt / second Ao
=> 80+ S|gnatures [ second |y

_Hﬂﬂl!lﬂlﬂﬁ.l ‘IHIH”JEBP“

A Touch of Evil: High-Assurance Cryptographic

Hardware from Untrusted Components
Vasilios Mavroudis Andrea Cerulli Petr Svenda
University College London University College London Masaryk University
. v.mavroudis(@cs.ucl.ac.uk andrea.cerulli.13@uclac.uk svenda@fi.muni.cz
Dan Cvrcek Dusan Klinec George Danezis
EnigmaBridge EnigmaBridge University College London

dan@enigmabridge.com dusan@enigmabridge.com g.danezis@ucl.ac.uk



CR®CS

How to run MPC on JavaCards ~
JCMathLib

 MPC applets: https:/github.com/OpenCryptoProject/Myst, https://github.com/crocs-muni/JCFROST

« Schnorr-based MPC protocols requires low-level curve operations
— Supported by card, but not exposed by standard JavaCard API

« JCMathLib https://github.com/OpenCryptoProject/JCMathLib
— Adds support for low-level classes/methods like ECPoint and Integer
* Which are otherwise not supported by public JavaCard API
« (available via proprietary extensions, but requires NDA)
— Main goals
1. Expose helpful functions for research/FOSS usage (e.g., Schnorr MPC sigs)
2. Allow for publication of functional applets originally based on proprietary API
— Low-level methods build (mis)using existing JC API
« E.g., ECPoint.multiply() using ECDH KeyAgreement + additional computation
— Optimized for low RAM memory footprint and performance

42  PV204 | Secure Multiparty Computation https://crocs.fi.muni.cz @CRoCS_MUNI


https://github.com/OpenCryptoProject/Myst
https://github.com/crocs-muni/JCFROST
https://github.com/crocs-muni/JCFROST
https://github.com/crocs-muni/JCFROST
https://github.com/OpenCryptoProject/JCMathLib
https://github.com/OpenCryptoProject/JCMathLib

SHINE: Resilience via Practical Interoperability of Multi-party Schnorr Signature Schemes,

CR&CS Antonin Dufka, Vladimir Sedlacek, Petr Svenda, SECRYPT , 2022.

SHINE: Interoperability of MPC signatures

43

|dea: make existing Schnorr-based MPC protocols interoperable via
untrusted mediator

— NE-based schemes (CoSi, Myst)

— NC-based schemes (MuSig, MSDL)

— Half-ND-based schemes (MuSig2, SpeedyMuSig)

Additional multi-signature protocol optimized for smartcards (SHINE)

— JCMathLib used NC achme NE scbems AN scbme NE accas
(MuSig, MSDL) untrusted {CoSi, SHINE} {MuSig2, SpeedyMuSig) untrusted (CaSi, SHINE)
mediator mediator
2 m
3. COITI(Rl) 1 R2 2. B 1,R1 3 1. Ra
—,- " 1 a 1 N
e —— €
- 4. Com{Rz) s Am 4. Ryy, Ryz,m 5. R,m
B ] M i B EE— ——
—_— 1 1
5. Ry 0 5 _';r 6. 81 7. 8 -l.'-l'
——- . ———. B ]
I -— 7. R2 A —
3. rap + Zg3Ra o = 122G
8. & 6. R=R+ R, R=¢(R1a,...,m)
= Rigy...,m
1L s— 514+ Ba,2 = ¢z,2(A11 )
8. a=81+8+ Poaraa

PV204 | Secure Multiparty Computation https://crocs.fi.muni.cz @CRoCS_MUNI



USE-CASE SCENARIOS

46  PV204 | Secure Multiparty Computation https://crocs.fi.muni.cz @CRoCS_MUNI



CR®CS

High-level usage scenarios

Digital signature

User authentication

Data decryption

Key / randomness generation

s b=

PV204 | Secure Multiparty Computation https://crocs.fi.muni.cz @CRoCS_MUNI



CR®CS

Multiparty signatures — configurations and use-cases

« 2-out-of-2 (two signers, both required)
— One share on mobile phone, second on server (Smart-ID, eIDAS compliant)
— One share on US smartcard, second on Chinese smartcard (backdoor resistance)

« 2-out-of-3 (three signers total, at least two required)
— Two shares user, one share backup server (backup if user lose one share)
— One share lender, one share lendee, one share arbiter (for disputes)

* 1-out-of-3 (very robust backup against key loss)

 3-out-of-5 (shares distribution voting)
— CEO has 2 shares, all other have only single one

* 11-out-of-15 (Liquid consortium signing blocks on Liquid sidechain)

48  PV204 | Secure Multiparty Computation https://crocs.fi.muni.cz @CRoCS_MUNI



CR®CS

vy

N

Multiparty signatures with additional policy /,,7%
7’/""";////
» Signers can also enforce specific signing policy Y

— Only during certain time, documents, type of operations, certain amount...

« 2-out-of-2 with policy
— One person, second automatic signer only during office hours

« 2-out-of-3 with policy (two people, one automated device with policy)
— Two people together can always sign/transfer, one person alone only up to limit)

« 3-out-of-3 (two people, one automated device with policy)

— Automated device signs only when previous two already signed and additionally
impose 1-month delay (timelock)

49  PV204 | Secure Multiparty Computation https://crocs.fi.muni.cz @CRoCS_MUNI



CR®CS

MPC for authentication — configurations

(&1 M —
« 2-of-2: one user, two devices "E!_,ﬁ @ v :

— (higher security against device compromise) — - =

2-of-2: one user, one server-side automatic process ,@ 7 .ﬁ |
I
I

— (check time interval when authentication is allowed) _——— 7

2-0f-2: two users (user, approving controller) (g ~ (5 ~'
£ L

— (access must be approved by controller) :
2-0f-3: three users (user, redundant approvers)

-_—_—-~N -2
— (one user, two controllers — one approval is enough) I(@ “ﬁ?\ | : o |

. . I — -

- Bonus: Independent log of authentication attempt '™~ =3, f ‘ﬁ
& L

50  PV204 | Secure Multiparty Computation https://crocs.fi.muni.cz @CRoCS_MUNI



CR®CS

Threshold crypto protocols — tradeoffs and limitations

« Security vs. usabillity

« More difficult to finalize signature (more parties, communication)
* More complex software (bugs more likely)

* Number of rounds, interaction

« Amount of data exchanged

 Active research field => possibility for new attacks against whole
schemes

52  PV204 | Secure Multiparty Computation https://crocs.fi.muni.cz @CRoCS_MUNI



CR®CS

Backward compatibility

« Existing systems already use some crypto algorithm (RSA, ECDSA...)

— Difficult to switch all information systems to new algorithm

« Threshold algorithm is backward compatible, if verification is unchanged
— Only signer needs to update its software (to create threshold MPC signature)
— Verification software stay unchanged
— Allows for gradual opt-in (improve signing security of people who upgrade)
— (similarly for decryption — if encryption is unchanged)

- Backward-compatible signatures exists for commonly used algorithms
— RSA, ECDSA, EdADSA, Schnorr...

53  PV204 | Secure Multiparty Computation https://crocs.fi.muni.cz @CRoCS_MUNI



CR®CS

Summary

- JavaCard programming
— Optimizations need to consider underlaying hardware (RAM, co-processors...)
— Programs shall anticipate faults during computation (injected by an attacker)

* Secure Multiparty Computation
— Exciting domain, active research, many practical uses
— Collaborative computation of signatures, decryption, keygen...
— Can be backward compatible (k-ECDSA, k-RSA, k-Schnorr...)
— Usually more computational demanding (common CPU is enough)
— Some protocols efficient enough to run on smartcards (Schnorr-based sigs...)

« Split to multiple parties provides:
— Better protection of private key against bugs and compromise
— Possibility of additional policy before party participation

54  PV204 | Secure Multiparty Computation https://crocs.fi.muni.cz @CRoCS_MUNI



55  PV204 | Secure Multiparty Computation https://crocs.fi.muni.cz @CRoCS_MUNI



CR&,CS

Additional slides for generic multiparty computation and
whitebox cryptography construction (for interested, not
mandatory part of PV204 course)

56  PV204 | Secure Multiparty Computation https://crocs.fi.muni.cz @CRoCS_MUNI



Protections Against Reverse Engineering

HOW TO PROTECT

58  PV204 | Secure Multiparty Computation https://crocs.fi.muni.cz @CRoCS_MUNI



CR&,CS

Standard vs. whitebox attacker model
(symmetric crypto example)

59  PV204 | Secure Multiparty Computation



CR®CS

Classical obfuscation and its limits

* Provides only time-limited protection
» Obfuscation is mostly based on obscurity
— add bogus jumps
— reorder related memory blocks
— transform code into equivalent one, but less readable
— pack binary into randomized virtual machine...
» Barak’s (im)possibility result (2001)
— family of functions that will always leak some information
— but practical implementation may exist for others
« Cannetti et. al. positive results for point functions

» Goldwasser et. al. negative result for auxiliary inputs

PV204 | Secure Multiparty Computation https://crocs.fi.muni.cz @CRoCS_MUNI



Computation with Encrypted Data and Encrypted Function

CEF&CED

62  PV204 | Secure Multiparty Computation https://crocs.fi.muni.cz @CRoCS_MUNI



CR®CS

CEF

« Computation with Encrypted Function (CEF)
— A provides function F in form of P(F)
— P(F) can be executed on B’s machine with B's data D
— B will not learn function F during its computation (except D, to F(D;) mapping)

A B
(%) 7 &

https://crocs.fi.muni.cz @CRoCS_MUNI



CR®CS

CED

« Computation with Encrypted Data (CED)
— B provides encrypted data D as E(D) to A
— Ais able to compute its F as F(E(D)) to produce E(F(D))
* result of F over D, but encrypted
— A will not learn data D

— E(F(D)) is returned back to B and decrypted

A

https://crocs.fi.muni.cz @CRoCS_MUNI



CR®CS

CED via homomorphism

1. Convert your function into Boolean circuit with additions (xor) and
multiplications (and)

2. Compute addition and/or multiplication “securely”
— an attacker can compute E(D1+D2) = E(D1)+E(D2)
— but can learn neither D1 nor D2

3. Execute whole circuit over encrypted data

66  PV204 | Secure Multiparty Computation https://crocs.fi.muni.cz @CRoCS_MUNI



CR®CS

Types of homomorphic schemes

« Partial homomorphic scheme
— either addition or multiplication is possible, but not both; any number of times

« Somewhat homomorphic scheme
— Both operations possible, but only limited number of times

* Fully homomorphic scheme
— both addition and muiltiplication; unlimited number of times (any computable function)

67  PV204 | Secure Multiparty Computation https://crocs.fi.muni.cz @CRoCS_MUNI



CR®CS

Partial homomorphic schemes

« Example with RSA (multiplication)

— E(d,).E(d,) = d,¢. d,® mod m = (d,d,)® mod m = E(d,d,)
« Example Goldwasser-Micali (addition)

— E(dy).E(dy) = x97ry2 - X%r,2 = x31%92(r,r,)> = E(d,©d,)
 Limited to polynomial and rational functions
 Limited to only one type of operation (mult or add)

— or one type and very limited number of other type

« Slow — based on modular mult or exponentiation
— every operation equivalent to whole RSA operation

68  PV204 | Secure Multiparty Computation https://crocs.fi.muni.cz @CRoCS_MUNI



CR®CS

Somewhat Homomorphic Encryption

« Both operations (mult and add) possible, but only limited number of
times

 BGV (Barrat, Gentry and Vaikuntanathan) scheme
« GSW (Gentry-Sahai-\Waters) scheme

69  PV204 | Secure Multiparty Computation https://crocs.fi.muni.cz @CRoCS_MUNI



CR®CS

Fully homomorphic scheme (FHE)

* Holy grall - idea proposed in 1978 (Rivest et al.)

— both addition and multiplication securely
« But no scheme until 2009 (Gentry)!

* Fully homomorphic encryption
— based on lattices over integers
— noisy somewhat homomorphic encryption usable only for few operations
— combined with repair operation (enable to use it for more operations again)

https://crocs.fi.muni.cz @CRoCS_MUNI



CR®CS

Fully homomorphic scheme - usages

* Qutsourced cloud computing and storage
— FHE search, Private Database Queries
— protection of the query content

e Secure voting protocols
— yes/no vote, resulting decision

* Protection of proprietary info - MRI machines
— expensive algorithm analyzing MR data, HW protected
— central processing restricted due to private patient’'s data

71  PV204 | Secure Multiparty Computation https://crocs.fi.muni.cz @CRoCS_MUNI



CR®CS

Fully homomorphic scheme - practicality

* Not very practical (yet ©) (Gentry, 2009)
— 2.7GB key & 2h computation for every repair operation
— repair needed every ~10 multiplication

 FHE-AES implementation (Gentry, 2012)
— standard PC = 37 minutes/block (but 256GB RAM)

» Gentry-Halevi FHE accelerated in HW (2014)
— GPU /ASICS, many blocks in parallel => 5 minutes/block

* Replacing AES with other cipher (Simon) (2014)

— 2 seconds/block
* Very active research area!

72  PV204 | Secure Multiparty Computation https://crocs.fi.muni.cz @CRoCS_MUNI



CR®CS

Partial/Fully Homomorphic Encryption libraries

 Homomorphic encryption libraries: HEIib, FV-NFLIib, SEAL

« Comparison of features and performance
— https://arxiv.org/pdf/1812.02428v1.pdf
— https://link.springer.com/chapter/10.1007/978-3-030-12942-2 32

73  PV204 | Secure Multiparty Computation https://crocs.fi.muni.cz @CRoCS_MUNI


https://arxiv.org/pdf/1812.02428v1.pdf
https://link.springer.com/chapter/10.1007/978-3-030-12942-2_32
https://link.springer.com/chapter/10.1007/978-3-030-12942-2_32
https://link.springer.com/chapter/10.1007/978-3-030-12942-2_32
https://link.springer.com/chapter/10.1007/978-3-030-12942-2_32
https://link.springer.com/chapter/10.1007/978-3-030-12942-2_32
https://link.springer.com/chapter/10.1007/978-3-030-12942-2_32
https://link.springer.com/chapter/10.1007/978-3-030-12942-2_32
https://link.springer.com/chapter/10.1007/978-3-030-12942-2_32
https://link.springer.com/chapter/10.1007/978-3-030-12942-2_32

WHITEBOX CRYPTOGRAPHY

74  PV204 | Secure Multiparty Computation https://crocs.fi.muni.cz @CRoCS_MUNI



CR®CS

White-box attack resistant cryptography

* How to protect symmetric cryptography cipher?
— protects used cryptographic key (and data)

« Special implementation fully compatible with standard AES/DES...
2002 (Chow et al.)

— series of lookups into pre-computed tables

* Implementation of AES which takes only data
— key is already embedded inside
— hard for an attacker to extract embedded key
— Distinction between key and implementation of algorithm (AES) is removed

75  PV204 | Secure Multiparty Computation https://crocs.fi.muni.cz @CRoCS_MUNI



PV204 | Secure Multiparty Computation https://crocs.fi.muni.cz @CRoCS_MUNI



82

AES key

&)

L makeTabIe()

precompTable

Environment outside control
of an attacker

4

S ——
encrypt(data)

Environment under control
of an attacker
pr ey

encrypted data

g

PV204 | Secure Multiparty Computation

https://crocs.fi.muni.cz @CRoCS_MUNI



CR®CS

WBACR Ciphers - pros

* Practically usable (size/speed)
— implementation size ~800KB (WBACR AES tables)
— speed ~MBs/sec (WBACRAES ~6.5MB/s vs. 220MB/s)

« Hard to extract embedded key
— Complexity semi-formally guaranteed (if scheme is secure)
— AES shown unsuitable (all WBARC AESes are broken)

* One can simulate asymmetric cryptography!

— implementation contains only encryption part of cipher
— until attacker extracts key, decryption is not possible

https://crocs.fi.muni.cz @CRoCS_MUNI



CR®CS

WBACR Ciphers - cons

* Implementation can be used as oracle (black box)
— attacker can supply inputs and obtain outputs
— even if she cannot extract the key
— (can be partially solved by I/O encodings)

* Problem of secure input/output
— protected is only cipher (e.g., AES), not code around
+ Key is fixed and cannot be easily changed

« Successful cryptanalysis for several schemes ®
— several former schemes broken
— new techniques being proposed

87  PV204 | Secure Multiparty Computation https://crocs.fi.muni.cz @CRoCS_MUNI



CR®CS

Space-Hard Ciphers

« Space-hard notion of WBACR ciphers

— How much can be fnc compressed after key extraction?
« WBACR AES=>16B key=>extreme compression (bad)
— Amount of code to extract to maintain functionality
« SPACE suite of space-hard ciphers

— Combination of I-line target heavy Feistel network and precomputed lookup
tables (e.g., by AES)

— Variable code size to exec time tradeoffs

88  PV204 | Secure Multiparty Computation https://crocs.fi.muni.cz @CRoCS_MUNI



CR®CS

Whitebox transform IS used in the wild

* Proprietary DRM systems

— details are usually not published
— AES-based functions, keyed hash functions, RSA, ECC...
— interconnection with surrounding code

« Chow at al. (2002) proposal made at Cloakware
— firmware protection solution

* Apple’s FairPlay & Brahms attack
 http://whiteboxcrypto.com/files/2012 MISC DRM.pdf

93  PV204 | Secure Multiparty Computation https://crocs.fi.muni.cz @CRoCS_MUNI


http://whiteboxcrypto.com/files/2012_MISC_DRM.pdf

