Basics of calculus required for this document
1. log(abe) = log(a) + log(b) + log(c)
2. log(a)* = k log(a)
3. log (%) = log(a) — log(b)
4. log(exp{a}) = a
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8. Derivative with respect to a vector
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The breakdown of derivative
Lete = [Zl} be a column vector
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andd = [gl] be a column vector
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Take the derivative of £ with respect to e; and ez independently
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Since the derivative is w.r.t a column vector, the result should be put in a column
vector
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Paragraph vector - distributed bag-of-words

The notation is as follows

Let V denote the vocabulary size.

Let N denote the number of documents.

Let z,,; denote the number of occurrences of word w; in document n.

X, implies a vector of word counts for document n.

Training data D = {x1,...Xpn,..., XN}

Let E € RV*4 word embeddings, where d is the dimension of embeddings, d << V.

Let b € RV*! denote the bias vector.

Let D € RN N number of paragraph (document) embeddings.
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Figure 1: Paragraph vector or document model is trained to maximize the probability of
all the words present in the paragraph ID P,,.

The objective function or log-likelihood of the training data
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Gradient w.r.t. word embedding V¢ L

The word embedding matrix is E €

word embedding.

RY*4 where each row €, k =1...V represents a

Since ey, is a row-vector, the final gradient will also be a row-vector.
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Interpretation of the gradient (i.e., derivative of log-likelihood)

e I,i: number of times word k appeared in document n.

e O,k the estimated probability of word & in document n.

. ZZ Tni: sum of all the word counts in document n.

o (>, ni)bnk: relative count of word k in document n.

. [z"k - xm)ﬁnk}: the difference of absolute word count to the relative word

count.

. [mnk -3, xm)enk} d,,, and weight this along the direction of document embedding.

e The final gradient is the sum of all weighted document embeddings.



Gradient w.r.t. document embeddings V4 £
The document embedding matrix is D € R where each columnd, n=1...N
represents a document embedding.
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Interpretation of the gradient (i.e., derivative of log-likelihood)
e x,;: number of times word ¢ appeared in document 7.

e 0,;: the estimated probability of word 7 in document n.

. Zk Znk: sum of all the word counts in document n.

o 0ni(D>; Tni): relative count of word ¢ in document n.

. [znk - xni)ﬁnk}: the difference of absolute word count to the relative word

count.

e € [mnk - xm‘)enk} : weight this along the direction of word embedding for

word 1.

e The final gradient is the sum of all weighted word embeddings.



Training the model

Algorithm 1 Training algorithm

Require: Training data x; ...x,
Require: Vocabulary of size V
Initialize E, b, D to small random values sampling from A/(0,0.001)
n=20.1 N > learning rate
Does )
Zf=1 ZLI Tni
for : = 0;4 < 100;¢ + + do > Training iterations
for k=0;k<V;k++ do
Compute gradient Ve, £ using Eq.
e e, +nVe L > Update word embedding ey,
end for
for n=1;n < N;n++ do
Compute gradient Vg4, £ using Eq.
d, < d,+nVqy, L > Update document embedding d,,
end for
end for
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Initialize bias vector b; = log (

Inference

To obtain document embeddings for a test sentence or document.

Algorithm 2 Inference algorithm

Require: Test document x; > Vector of word counts
Use trained E, b
Initialize d; to small random values sampling from A/(0,0.001)

n=0.1 > learning rate
for : = 0;i < 20;¢ + + do > Inference iterations
Compute gradient Vg, L using Eq.
d; < d; +nVa,L > Update document embedding d;
end for




Gradient computation by hand

Consider the following toy example where we have N = 2 documents and vocabulary of
size V = 3.

Document | Word index —

index | | w; ws w3
1] 5 3 0
21 1 2 3

The document embeddings (each column in one doc embedding) are

[d do
D= |25 10
2.0 3.0

The estimated probabilities are

g _ [0-625 0375 0.0
o1 03 06

Compute gradients of the objective w.r.t word embeddings using the following equation
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Hands on exercise jupyter notebook

Here is the link to Google collab notebook
https://colab.research.google.com/drive/1RFeAoiYICGh4R31x_g038IiinTGgixDD?
usp=sharing
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