Basics of calculus required for this document

1.
$$\log(a b c) = \log(a) + \log(b) + \log(c)$$

$$2. \log(a)^k = k \log(a)$$

3.
$$\log\left(\frac{a}{b}\right) = \log(a) - \log(b)$$

4.
$$\log(\exp\{a\}) = a$$

$$5. \ \frac{\mathrm{d}\log x}{\mathrm{d}x} = \frac{1}{x}$$

$$6. \ \frac{\mathrm{d}\exp\{x\}}{\mathrm{d}x} = \exp\{x\}$$

7.
$$\frac{\mathrm{d}\exp\{ax\}}{\mathrm{d}x} = \exp\{ax\} \frac{\mathrm{d}ax}{\mathrm{d}x} = a \exp\{ax\}$$

8. Derivative with respect to a vector

$$\mathcal{L} = \mathbf{e}^T \mathbf{d}$$

$$\frac{\partial \mathcal{L}}{\partial \mathbf{e}} = \mathbf{d}$$

The breakdown of derivative

Let
$$\mathbf{e} = \begin{bmatrix} e_1 \\ e_2 \end{bmatrix}$$
 be a column vector and $\mathbf{d} = \begin{bmatrix} d_1 \\ d_2 \end{bmatrix}$ be a column vector then, $\mathcal{L} = \begin{bmatrix} e_1 & e_2 \end{bmatrix} \begin{bmatrix} d_1 \\ d_2 \end{bmatrix}$ $= e_1 d_1 + e_2 d_2$.

Take the derivative of \mathcal{L} with respect to e_1 and e_2 independently

$$\frac{\partial e_1 d_1 + e_2 d_2}{\partial e_1} = d_1$$
$$\frac{\partial e_1 d_1 + e_2 d_2}{\partial e_2} = d_2$$

Since the derivative is w.r.t a column vector, the result should be put in a column vector

$$\frac{\partial \mathcal{L}}{\partial \mathbf{e}} = \begin{bmatrix} d_1 \\ d_2 \end{bmatrix} = \mathbf{d}.$$

Paragraph vector - distributed bag-of-words

The notation is as follows

- Let V denote the vocabulary size.
- \bullet Let N denote the number of documents.
- Let x_{ni} denote the number of occurrences of word w_i in document n.
- \mathbf{x}_n implies a vector of word counts for document n.
- Training data $\mathcal{D} = \{\mathbf{x}_1, \dots \mathbf{x}_n, \dots, \mathbf{x}_N\}$
- Let $\mathbf{E} \in \mathbb{R}^{V \times d}$ word embeddings, where d is the dimension of embeddings, d << V.
- Let $\mathbf{b} \in \mathbb{R}^{V \times 1}$ denote the bias vector.
- Let $\mathbf{D} \in \mathbb{R}^{d \times N}$ N number of paragraph (document) embeddings.

Figure 1: Paragraph vector or document model is trained to maximize the probability of all the words present in the paragraph ID \mathcal{P}_n .

The objective function or log-likelihood of the training data

$$\mathcal{L} = \sum_{n=1}^{N} \log p(\mathbf{x}_n)$$

$$= \sum_{n=1}^{N} \sum_{i=1}^{V} \log(p(x_{ni}))^{x_{ni}}$$

$$= \sum_{n=1}^{N} \sum_{i=1}^{V} \log(\theta_{ni})^{x_{ni}}$$

$$= \sum_{n=1}^{N} \sum_{i=1}^{V} x_{ni} \log(\theta_{ni})$$

$$= \sum_{n=1}^{N} \sum_{i=1}^{V} x_{ni} \log \left[\frac{\exp\{b_i + \mathbf{e}_i^T \mathbf{d}_n\}}{\sum_{j=1}^{V} \exp\{b_i + \mathbf{e}_i^T \mathbf{d}_n\}} \right]$$

$$\mathcal{L} = \sum_{n=1}^{N} \sum_{i=1}^{V} x_{ni} \left[(b_i + \mathbf{e}_i^T \mathbf{d}_n) - \log\left(\sum_{j=1}^{V} \exp\{b_j + \mathbf{e}_j^T \mathbf{d}_n\}\right) \right]$$
(1)

Gradient w.r.t. word embedding $\nabla_{\mathbf{e}_k} \mathcal{L}$

The word embedding matrix is $\mathbf{E} \in \mathbb{R}^{V \times d}$, where each row $\mathbf{e}_k \quad k = 1 \dots V$ represents a word embedding.

Since \mathbf{e}_k is a row-vector, the final gradient will also be a row-vector.

$$\nabla_{\mathbf{e}_{k}} \mathcal{L} = \frac{\partial \sum_{n=1}^{N} \sum_{i=1}^{V} x_{ni} \left[(b_{i} + \mathbf{e}_{i}^{T} \mathbf{d}_{n}) - \log \left(\sum_{j} \exp\{b_{j} + \mathbf{e}_{j}^{T} \mathbf{d}_{n}\} \right) \right]}{\partial \mathbf{e}_{k}}$$

$$= \sum_{n} \sum_{i} x_{ni} \left[\frac{\partial (b_{i} + \mathbf{e}_{i}^{T} \mathbf{d}_{n})}{\partial \mathbf{e}_{k}} \right] - \sum_{i} x_{ni} \left[\frac{\partial \log \left(\sum_{j} \exp\{b_{j} + \mathbf{e}_{j}^{T} \mathbf{d}_{n}\} \right) \right]}{\partial \mathbf{e}_{k}}$$

$$= \sum_{n} \left[x_{nk} (\mathbf{d}_{n}^{T}) \right] - \sum_{i} x_{ni} \left[\frac{1}{\sum_{j} \exp\{b_{j} + \mathbf{e}_{j}^{T} \mathbf{d}_{n}\}} \left(\frac{\partial \sum_{j} \exp\{b_{j} + \mathbf{e}_{j}^{T} \mathbf{d}_{n}\} \right) \right]$$

$$= \sum_{n} \left[x_{nk} \mathbf{d}_{n}^{T} \right] - \sum_{i} x_{ni} \left[\underbrace{\frac{1}{\sum_{j} \exp\{b_{j} + \mathbf{e}_{j}^{T} \mathbf{d}_{n}\}}}_{\mathbf{e}_{nk}} \mathbf{d}_{n} \right]$$

$$= \sum_{n} \left[x_{nk} \mathbf{d}_{n}^{T} \right] - \sum_{i} x_{ni} \left[\underbrace{\frac{\exp\{b_{i} + \mathbf{e}_{k}^{T} \mathbf{d}_{n}^{T}\} \right\}}_{\mathbf{e}_{nk}}}_{\mathbf{e}_{nk}} \mathbf{d}_{n} \right]$$

$$= \sum_{n} \left[x_{nk} \mathbf{d}_{n}^{T} \right] - \sum_{i} x_{in} \left[e_{nk} \mathbf{d}_{n}^{T} \right]$$

$$= \sum_{n} \left[x_{nk} \mathbf{d}_{n}^{T} \right] - \sum_{i} x_{in} \left[e_{nk} \mathbf{d}_{n}^{T} \right]$$

$$= \sum_{n} \left[x_{nk} \mathbf{d}_{n}^{T} \right] - \sum_{i} x_{in} \left[e_{nk} \mathbf{d}_{n}^{T} \right]$$

$$= \sum_{n} \left[x_{nk} \mathbf{d}_{n}^{T} \right] - \sum_{i} x_{in} \left[e_{nk} \mathbf{d}_{n}^{T} \right]$$

$$= \sum_{n} \left[x_{nk} \mathbf{d}_{n}^{T} \right] - \sum_{i} x_{in} \left[e_{nk} \mathbf{d}_{n}^{T} \right]$$

$$= \sum_{n} \left[x_{nk} \mathbf{d}_{n}^{T} \right] - \sum_{i} x_{in} \left[e_{nk} \mathbf{d}_{n}^{T} \right]$$

$$= \sum_{n} \left[x_{nk} \mathbf{d}_{n}^{T} \right] - \sum_{i} x_{ni} \left[e_{nk} \mathbf{d}_{n}^{T} \right]$$

$$= \sum_{n} \left[x_{nk} \mathbf{d}_{n}^{T} \right] - \sum_{i} x_{ni} \left[e_{nk} \mathbf{d}_{n}^{T} \right]$$

$$= \sum_{n} \left[x_{nk} \mathbf{d}_{n}^{T} \right] - \sum_{i} x_{ni} \left[e_{nk} \mathbf{d}_{n}^{T} \right]$$

Interpretation of the gradient (i.e., derivative of log-likelihood)

- x_{nk} : number of times word k appeared in document n.
- θ_{nk} : the estimated probability of word k in document n.
- $\sum_{i} x_{ni}$: sum of all the word counts in document n.
- $(\sum_{i} x_{ni})\theta_{nk}$: relative count of word k in document n.
- $\left[x_{nk} (\sum_{i} x_{ni})\theta_{nk}\right]$: the difference of absolute word count to the relative word count.
- $\left[x_{nk} (\sum_i x_{ni})\theta_{nk}\right]\mathbf{d}_n$, and weight this along the direction of document embedding.
- The final gradient is the sum of all weighted document embeddings.

Gradient w.r.t. document embeddings $\nabla_{\mathbf{d}_n} \mathcal{L}$

The document embedding matrix is $\mathbf{D} \in \mathbb{R}^{d \times N}$, where each column \mathbf{d}_n $n = 1 \dots N$ represents a document embedding.

$$\mathcal{L} = \sum_{n=1}^{N} \sum_{i=1}^{V} x_{ni} \Big[(b_i + \mathbf{e}_i^T \mathbf{d}_n) - \log \Big(\sum_{j=1}^{V} \exp\{b_j + \mathbf{e}_j^T \mathbf{d}_n\} \Big) \Big]$$

$$\nabla_{\mathbf{d}_n} \mathcal{L} = \frac{\partial \sum_{n=1}^{N} \sum_{i=1}^{V} x_{ni} \Big[(b_i + \mathbf{e}_i^T \mathbf{d}_n) - \log \Big(\sum_{j} \exp\{b_j + \mathbf{e}_j^T \mathbf{d}_n\} \Big) \Big]}{\partial \mathbf{d}_n}$$

$$= \sum_{i=1}^{V} x_{ni} \Big(0 + \mathbf{e}_i - \frac{1}{\Big(\sum_{j} \exp\{b_j + \mathbf{e}_j^T \mathbf{d}_n\} \Big)} \Big(\sum_{k} \exp\{b_k + \mathbf{e}_k^T \mathbf{d}_n\} \mathbf{e}_k \Big) \Big)$$

$$= \sum_{i=1}^{V} x_{ni} \Big(\mathbf{e}_i - \sum_{k} \mathbf{e}_k \underbrace{\frac{\exp\{b_k + \mathbf{e}_k^T \mathbf{d}_n\}}{\sum_{j} \exp\{b_j + \mathbf{e}_j^T \mathbf{d}_n\}}} \Big)$$

$$= \sum_{i=1}^{V} x_{ni} \Big(\mathbf{e}_i - (\sum_{k=1}^{V} \mathbf{e}_k \theta_{nk}) \Big)$$

$$= \Big(\sum_{i=1}^{V} \mathbf{e}_i x_{ni} \Big) - \Big((\sum_{k=1}^{V} \mathbf{e}_k \theta_{nk}) \Big(\sum_{i=1}^{V} x_{ni} \Big) \Big)$$

$$= \sum_{i=1}^{V} \mathbf{e}_i \Big(x_{ni} - \theta_{ni} \Big(\sum_{k=1}^{V} x_{nk} \Big) \Big)$$
(3)

Interpretation of the gradient (i.e., derivative of log-likelihood)

- x_{ni} : number of times word i appeared in document n.
- θ_{ni} : the estimated probability of word *i* in document *n*.
- $\sum_{k} x_{nk}$: sum of all the word counts in document n.
- $\theta_{ni}(\sum_i x_{ni})$: relative count of word *i* in document *n*.
- $\left[x_{nk} (\sum_{i} x_{ni})\theta_{nk}\right]$: the difference of absolute word count to the relative word count.
- $\mathbf{e}_i \left[x_{nk} (\sum_i x_{ni}) \theta_{nk} \right]$: weight this along the direction of word embedding for word i.
- The final gradient is the sum of all weighted word embeddings.

Training the model

```
Algorithm 1 Training algorithm
Require: Training data \mathbf{x}_1 \dots \mathbf{x}_n
Require: Vocabulary of size V
   Initialize \mathbf{E}, \mathbf{b}, \mathbf{D} to small random values sampling from \mathcal{N}(0, 0.001)
                                                                                                                    ▷ learning rate
   Initialize bias vector b_i = \log\left(\frac{\sum_{n=1}^{N} x_{ni}}{\sum_{n=1}^{N} \sum_{i=1}^{V} x_{ni}}\right)
   for i = 0; i < 100; i + + do
                                                                                                          ▶ Training iterations
         for k = 0; k < V; k + + do
              Compute gradient \nabla_{\mathbf{e}_k} \mathcal{L} using Eq. (2)
                                                                                           \triangleright Update word embedding \mathbf{e}_k
              \mathbf{e}_k \leftarrow \mathbf{e}_k + \eta \nabla_{\mathbf{e}_k} \mathcal{L}
         end for
         for n = 1; n < N; n + + do
              Compute gradient \nabla_{\mathbf{d}_n} \mathcal{L} using Eq. (3)
                                                                                   \triangleright Update document embedding \mathbf{d}_n
              \mathbf{d}_n \leftarrow \mathbf{d}_n + \eta \nabla_{\mathbf{d}_n} \mathcal{L}
         end for
   end for
```

Inference

To obtain document embeddings for a test sentence or document.

```
Algorithm 2 Inference algorithmRequire: Test document \mathbf{x}_t\triangleright Vector of word countsUse trained \mathbf{E}, \mathbf{b}Initialize \mathbf{d}_t to small random values sampling from \mathcal{N}(0, 0.001)\eta = 0.1\triangleright learning ratefor i = 0; i < 20; i + + \mathbf{do}\triangleright Inference iterationsCompute gradient \nabla_{\mathbf{d}_t} \mathcal{L} using Eq. (3)\mathbf{d}_t \leftarrow \mathbf{d}_t + \eta \nabla_{\mathbf{d}_t} \mathcal{L}\triangleright Update document embedding \mathbf{d}_tend for
```

Gradient computation by hand

Consider the following toy example where we have N=2 documents and vocabulary of size V=3.

	$\mathbf{Word} \mathbf{index} \rightarrow $		
$\mathbf{index}\downarrow$	w_1	w_2	w_3
1	5	3	0
2	1	2	3

The document embeddings (each column in one doc embedding) are

$$\mathbf{D} = \begin{bmatrix} \mathbf{d}_1 & \mathbf{d}_2 \\ 2.5 & 1.0 \\ -2.0 & 3.0 \end{bmatrix}$$

The estimated probabilities are

$$\boldsymbol{\theta} = \begin{bmatrix} 0.625 & 0.375 & 0.0 \\ 0.1 & 0.3 & 0.6 \end{bmatrix}$$

Compute gradients of the objective w.r.t word embeddings using the following equation

$$\nabla_{\mathbf{e}} \mathcal{L} = \sum_{n=1}^{N} \left[x_{nk} - (\sum_{i=1}^{V} x_{ni}) \theta_{nk} \right] \mathbf{d}_{n}^{T}$$

1.
$$\nabla_{\mathbf{e}_1} \mathcal{L} =$$

2.
$$\nabla_{\mathbf{e}_2} \mathcal{L} =$$

3.
$$\nabla_{\mathbf{e}_3} \mathcal{L} =$$

Hands on exercise jupyter notebook

Here is the link to Google collab notebook

https://colab.research.google.com/drive/1RFeAoiYICGh4R31x_g038IiinTGgixDD?usp=sharing