
Dictionaries and Tolerant Retrieval (Chapter 3)
Algorithm 1 (Soundex Code)
Transformation of a string to a 4-character soundex code

1. Keep the first character

2. Rewrite {𝐴, 𝐸, 𝐼, 𝑂, 𝑈, 𝐻, 𝑊, 𝑌 } to 0

3. Rewrite characters

(a) {𝐵, 𝐹, 𝑃, 𝑉 } to 1
(b) {𝐶, 𝐺, 𝐽, 𝐾, 𝑄, 𝑆, 𝑋, 𝑍} to 2
(c) {𝐷, 𝑇} to 3
(d) {𝐿} to 4
(e) {𝑀, 𝑁} to 5
(f) {𝑅} to 6

4. Remove duplicities

5. Remove zeros

6. Change to length 4 (truncate or add trailing zeros)

Algorithm 2 (Querying in Permuterm Index)
For query 𝑞, find keys according to the following scheme:

• for 𝑞 = 𝑋, find keys in the form 𝑋$

• for 𝑞 = 𝑋*, find keys in the form $𝑋*

• for 𝑞 = *𝑋, find keys in the form 𝑋$*

• for 𝑞 = *𝑋*, find keys in the form 𝑋*

• for 𝑞 = 𝑋*𝑌 , find keys in the form 𝑌 $𝑋*

Algorithm 3 (Levenshtein Distance – declarative approach)
Distance between two strings 𝑎 and 𝑏 is given by lev𝑎,𝑏(|𝑎|, |𝑏|) where

lev𝑎,𝑏(𝑖, 𝑗) =

⎧⎪⎪⎨⎪⎪⎩
max(𝑖, 𝑗) if min(𝑖, 𝑗) = 0

min

⎧⎨⎩
lev𝑎,𝑏(𝑖 − 1, 𝑗) + 1
lev𝑎,𝑏(𝑖, 𝑗 − 1) + 1
lev𝑎,𝑏(𝑖 − 1, 𝑗 − 1) + 1(𝑎𝑖 ̸=𝑏𝑗)

otherwise

where 1(𝑎𝑖 ̸=𝑏𝑗) is the indicator function equal to 1 when 𝑎𝑖 ̸= 𝑏𝑗, and 0 otherwise.
lev𝑎,𝑏(𝑖, 𝑗) is the distance between the first 𝑖 characters of string 𝑎 and the first 𝑗 characters
of string 𝑏.

Algorithm 4 (Levenshtein distance – imperative approach)
1: function LevenshteinDistance(𝑠1, 𝑠2)
2: for i = 0 to |𝑠1| do
3: 𝑚[𝑖, 0] = 𝑖
4: end for
5: for j = 0 to |𝑠2| do
6: 𝑚[0, 𝑗] = 𝑗

1

7: end for
8: for i = 1 to |𝑠1| do
9: for j = 1 to |𝑠2| do

10: if 𝑠1[𝑖] == 𝑠2[𝑗] then
11: 𝑚[𝑖, 𝑗] = min{𝑚[𝑖 − 1, 𝑗] + 1, 𝑚[𝑖, 𝑗 − 1] + 1, 𝑚[𝑖 − 1, 𝑗 − 1]}
12: else
13: 𝑚[𝑖, 𝑗] = min{𝑚[𝑖 − 1, 𝑗] + 1, 𝑚[𝑖, 𝑗 − 1] + 1, 𝑚[𝑖 − 1, 𝑗 − 1] + 1}
14: end if
15: end for
16: end for
17: return 𝑚[|𝑠1|, |𝑠2|]
18: end function

Exercise 3/1
a) Find two different words of the same soundex code.

b) Find two phonetically similar words of different soundex codes.

a) sword and short have codes S630

b) fog and thug have codes F200 and T200

Exercise 3/2
Write elements in a dictionary of the permuterm index generated by the term mama.

𝑚𝑎𝑚𝑎$, 𝑎𝑚𝑎$𝑚, 𝑚𝑎$𝑚𝑎, 𝑎$𝑚𝑎𝑚, $𝑚𝑎𝑚𝑎.

Exercise 3/3
Which keys are usable for finding the term s*ng in a permuterm wildcard index?

𝑛𝑔$𝑠*

Exercise 3/4
What is the complexity of intersection of two un-ordered posting lists of lengths 𝑚 and
𝑛?

𝒪(𝑚 log 𝑚 + 𝑛 log 𝑛)

Exercise 3/5
What is the complexity (in 𝒪-notation) of intersecting of two ordered posting lists of
lengths 𝑚 and 𝑛?

2

𝒪(𝑚 + 𝑛)

Exercise 3/6
What is the worst-case complexity of searching in hash tables?

Linear.

Exercise 3/7
Compute the Levenshtein distance between paris and alice. Write down the matrix of
distances between all prefixes as computed by Algorithm 4.

Follow Algorithm 4 and put one word horizontally and the other vertically into the
matrix, both starting with 𝜀 (empty string). Then initialize the first rows and columns
(see the lines 2 to 7 of the algorithm).

𝜀 p a r i s
𝜀 0 1 2 3 4 5
a 1
l 2
i 3
c 4
e 5

Table 1: Initialization of the matrix.

Then compare the horizontal prefixes (of word paris) with the vertical prefixes (of word
alice), character by character, and fill in each cell of the matrix based on the values in
the surrounding cells by the criterion in the algorithm. Select the minimum of numbers
incremented by one in the cells up and left, and upper left incremented by one if the
characters are not equal, without increment otherwise (a condition starting at line 10).

For example, for the cell ap, select 𝑚𝑖𝑛{1 + 1, 1 + 1, 0 + 1} = 𝑚𝑖𝑛{2, 2, 1} = 1. The
upper left value is 0 + 1 because 𝑎 ̸= 𝑝. For the cell aa, select 𝑚𝑖𝑛{2 + 1, 1 + 1, 1 + 0} =
𝑚𝑖𝑛{3, 2, 1} = 1. The upper left value is 1 + 0 because 𝑎 = 𝑎.

𝜀 p a r i s
𝜀 0 1 2 3 4 5
a 1 1 1
l 2
i 3
c 4
e 5

Table 2: First two iterations of the main dynamic programming step.

3

Now continue and fill out the whole matrix, the value in the bottom right cell is the
Levenshtein distance for words paris and alice, which is 4.

𝜀 p a r i s
𝜀 0 1 2 3 4 5
a 1 1 1 2 3 4
l 2 2 2 2 3 4
i 3 3 3 3 2 3
c 4 4 4 4 3 3
e 5 5 5 5 4 4

Table 3: The final matrix with the Levenshtein distance in bold.

4

	Exercise 3/1
	Exercise 3/2
	Exercise 3/3
	Exercise 3/4
	Exercise 3/5
	Exercise 3/6
	Exercise 3/7

