Why ranked retrieval? Term frequency tf-idf weighting The vector space model PV211: Introduction to Information Retrieval https://www.fi.muni.cz/~sojka/PV211 IIR 6: Scoring, term weighting, the vector space model Handout version Petr Sojka, Hinrich Schütze et al. Faculty of Informatics, Masaryk University, Brno Center for Information and Language Processing, University of Munich 2024-03-14 (compiled on 2024-03-08 15:05:57) Sojka, IIR Group: PV211: Scoring, term weighting, the vector space model 1 / 56 Why ranked retrieval? Term frequency tf-idf weighting The vector space model Overview 1 Why ranked retrieval? 2 Term frequency 3 tf-idf weighting 4 The vector space model Sojka, IIR Group: PV211: Scoring, term weighting, the vector space model 2 / 56 Why ranked retrieval? Term frequency tf-idf weighting The vector space model Take-away today Ranking search results: why it is important (as opposed to just presenting a set of unordered Boolean results) Term frequency: This is a key ingredient for ranking. Tf-idf ranking: best known traditional ranking scheme Vector space model: One of the most important formal models for information retrieval (along with Boolean and probabilistic models) Sojka, IIR Group: PV211: Scoring, term weighting, the vector space model 3 / 56 Why ranked retrieval? Term frequency tf-idf weighting The vector space model Ranked retrieval Thus far, our queries have been Boolean. Documents either match or do not. Good for expert users with precise understanding of their needs and of the collection. Also good for applications: Applications can easily consume 1000s of results. Not good for the majority of users Most users are not capable of writing Boolean queries . . . . . . or they are, but they think it’s too much work. Most users don’t want to wade through 1000s of results. This is particularly true of web search. Sojka, IIR Group: PV211: Scoring, term weighting, the vector space model 5 / 56 Why ranked retrieval? Term frequency tf-idf weighting The vector space model Problem with Boolean search: Feast or famine Boolean queries often result in either too few (=0) or too many (1000s) results. Query 1 (boolean conjunction): [standard user dlink 650] → 200,000 hits – feast Query 2 (boolean conjunction): [standard user dlink 650 no card found] → 0 hits – famine In Boolean retrieval, it takes a lot of skill to come up with a query that produces a manageable number of hits. Sojka, IIR Group: PV211: Scoring, term weighting, the vector space model 6 / 56 Why ranked retrieval? Term frequency tf-idf weighting The vector space model Feast or famine: No problem in ranked retrieval With ranking, large result sets are not an issue. Just show the top 10 results Doesn’t overwhelm the user Premise: the ranking algorithm works: More relevant results are ranked higher than less relevant results. Sojka, IIR Group: PV211: Scoring, term weighting, the vector space model 7 / 56 Why ranked retrieval? Term frequency tf-idf weighting The vector space model Scoring as the basis of ranked retrieval We wish to rank documents that are more relevant higher than documents that are less relevant. How can we accomplish such a ranking of the documents in the collection with respect to a query? Assign a score to each query-document pair, say in [0, 1]. This score measures how well document and query “match”. Sojka, IIR Group: PV211: Scoring, term weighting, the vector space model 8 / 56 Why ranked retrieval? Term frequency tf-idf weighting The vector space model Query-document matching scores How do we compute the score of a query-document pair? Let’s start with a one-term query. If the query term does not occur in the document: score should be 0. The more frequent the query term in the document, the higher the score. We will look at a number of alternatives for doing this. Sojka, IIR Group: PV211: Scoring, term weighting, the vector space model 9 / 56 Why ranked retrieval? Term frequency tf-idf weighting The vector space model Take 1: Jaccard coefficient A commonly used measure of overlap of two sets Let A and B be two sets Jaccard coefficient: jaccard(A, B) = |A ∩ B| |A ∪ B| (A = ∅ or B = ∅) jaccard(A, A) = 1 jaccard(A, B) = 0 if A ∩ B = 0 A and B don’t have to be the same size. Always assigns a number between 0 and 1. Sojka, IIR Group: PV211: Scoring, term weighting, the vector space model 10 / 56 Why ranked retrieval? Term frequency tf-idf weighting The vector space model Jaccard coefficient: Example What is the query-document match score that the Jaccard coefficient computes for: Query: “ides of March” Document “Caesar died in March” jaccard(q, d) = 1/6 Sojka, IIR Group: PV211: Scoring, term weighting, the vector space model 11 / 56 Why ranked retrieval? Term frequency tf-idf weighting The vector space model What’s wrong with Jaccard? It doesn’t consider term frequency (how many occurrences a term has). Rare terms are more informative than frequent terms. Jaccard does not consider this information. We need a more sophisticated way of normalizing for the length of a document. Later in this lecture, we’ll use |A ∩ B|/ |A ∪ B| (cosine) . . . . . . instead of |A ∩ B|/|A ∪ B| (Jaccard) for length normalization. Sojka, IIR Group: PV211: Scoring, term weighting, the vector space model 12 / 56 Why ranked retrieval? Term frequency tf-idf weighting The vector space model Binary incidence matrix Anthony Julius The Hamlet Othello Macbeth . . . and Caesar Tempest Cleopatra Anthony 1 1 0 0 0 1 Brutus 1 1 0 1 0 0 Caesar 1 1 0 1 1 1 Calpurnia 0 1 0 0 0 0 Cleopatra 1 0 0 0 0 0 mercy 1 0 1 1 1 1 worser 1 0 1 1 1 0 . . . Each document is represented as a binary vector ∈ {0, 1}dim(V ). Sojka, IIR Group: PV211: Scoring, term weighting, the vector space model 14 / 56 Why ranked retrieval? Term frequency tf-idf weighting The vector space model Count matrix Anthony Julius The Hamlet Othello Macbeth . . . and Caesar Tempest Cleopatra Anthony 157 73 0 0 0 1 Brutus 4 157 0 2 0 0 Caesar 232 227 0 2 1 0 Calpurnia 0 10 0 0 0 0 Cleopatra 57 0 0 0 0 0 mercy 2 0 3 8 5 8 worser 2 0 1 1 1 5 . . . Each document is now represented as a count vector ∈ Ndim(V ). Sojka, IIR Group: PV211: Scoring, term weighting, the vector space model 15 / 56 Why ranked retrieval? Term frequency tf-idf weighting The vector space model Bag of words model We do not consider the order of words in a document. John is quicker than Mary and Mary is quicker than John are represented the same way. This is called a bag of words model. In a sense, this is a step back: The positional index was able to distinguish these two documents. We will look at “recovering” positional information later in this course. For now: bag of words model Sojka, IIR Group: PV211: Scoring, term weighting, the vector space model 16 / 56 Why ranked retrieval? Term frequency tf-idf weighting The vector space model Term frequency tf The term frequency tft,d of term t in document d is defined as the number of times that t occurs in d. We want to use tf when computing query-document match scores. But how? Raw term frequency is not what we want because: A document with tf = 10 occurrences of the term is more relevant than a document with tf = 1 occurrence of the term. But not 10 times more relevant. Relevance does not increase proportionally with term frequency. Sojka, IIR Group: PV211: Scoring, term weighting, the vector space model 17 / 56 Why ranked retrieval? Term frequency tf-idf weighting The vector space model Instead of raw frequency: Log frequency weighting The log frequency weight of term t in d is defined as follows wt,d = 1 + log10 tft,d if tft,d > 0 0 otherwise tft,d → wt,d: 0 → 0, 1 → 1, 2 → 1.3, 10 → 2, 1000 → 4, etc. Score for a document-query pair: sum over terms t in both q and d: tf-matching-score(q, d) = t∈q∩d (1 + log tft,d) The score is 0 if none of the query terms is present in the document. Sojka, IIR Group: PV211: Scoring, term weighting, the vector space model 18 / 56 Why ranked retrieval? Term frequency tf-idf weighting The vector space model Exercise Compute the Jaccard matching score and the tf matching score for the following query-document pairs. q: [information on cars] d: “all you’ve ever wanted to know about cars” q: [information on cars] d: “information on trucks, information on planes, information on trains” q: [red cars and red trucks] d: “cops stop red cars more often” Sojka, IIR Group: PV211: Scoring, term weighting, the vector space model 19 / 56 Why ranked retrieval? Term frequency tf-idf weighting The vector space model Frequency in document vs. frequency in collection In addition, to term frequency (the frequency of the term in the document) . . . . . . we also want to use the frequency of the term in the collection for weighting and ranking. Sojka, IIR Group: PV211: Scoring, term weighting, the vector space model 21 / 56 Why ranked retrieval? Term frequency tf-idf weighting The vector space model Desired weight for rare terms Rare terms are more informative than frequent terms. Consider a term in the query that is rare in the collection (e.g., arachnocentric). A document containing this term is very likely to be relevant. → We want high weights for rare terms like arachnocentric. Sojka, IIR Group: PV211: Scoring, term weighting, the vector space model 22 / 56 Why ranked retrieval? Term frequency tf-idf weighting The vector space model Desired weight for frequent terms Frequent terms are less informative than rare terms. Consider a term in the query that is frequent in the collection (e.g., good, increase, line). A document containing this term is more likely to be relevant than a document that doesn’t . . . . . . but words like good, increase and line are not sure indicators of relevance. → For frequent terms like good, increase, and line, we want positive weights . . . . . . but lower weights than for rare terms. Sojka, IIR Group: PV211: Scoring, term weighting, the vector space model 23 / 56 Why ranked retrieval? Term frequency tf-idf weighting The vector space model Document frequency We want high weights for rare terms like arachnocentric. We want low (positive) weights for frequent words like good, increase, and line. We will use document frequency to factor this into computing the matching score. The document frequency is the number of documents in the collection that the term occurs in. Sojka, IIR Group: PV211: Scoring, term weighting, the vector space model 24 / 56 Why ranked retrieval? Term frequency tf-idf weighting The vector space model idf weight dft is the document frequency, the number of documents that t occurs in. dft is an inverse measure of the informativeness of term t. We define the idf weight of term t as follows: idft = log10 N dft (N is the number of documents in the collection.) idft is a measure of the informativeness of the term. [log N/dft] instead of [N/dft] to “dampen” the effect of idf Note that we use the log transformation for both term frequency and document frequency. Sojka, IIR Group: PV211: Scoring, term weighting, the vector space model 25 / 56 Why ranked retrieval? Term frequency tf-idf weighting The vector space model Examples for idf Compute idft using the formula: idft = log10 1,000,000 dft term dft idft calpurnia 1 6 animal 100 4 sunday 1000 3 fly 10,000 2 under 100,000 1 the 1,000,000 0 Sojka, IIR Group: PV211: Scoring, term weighting, the vector space model 26 / 56 Why ranked retrieval? Term frequency tf-idf weighting The vector space model Effect of idf on ranking idf affects the ranking of documents for queries with at least two terms. For example, in the query “arachnocentric line”, idf weighting increases the relative weight of arachnocentric and decreases the relative weight of line. idf has little effect on ranking for one-term queries. Sojka, IIR Group: PV211: Scoring, term weighting, the vector space model 27 / 56 Why ranked retrieval? Term frequency tf-idf weighting The vector space model Collection frequency vs. Document frequency word collection frequency document frequency insurance 10440 3997 try 10422 8760 Collection frequency of t: number of tokens of t in the collection Document frequency of t: number of documents t occurs in Why these numbers? Which word is a better search term (and should get a higher weight)? This example suggests that df (and idf) is better for weighting than cf (and “icf”). Sojka, IIR Group: PV211: Scoring, term weighting, the vector space model 28 / 56 Why ranked retrieval? Term frequency tf-idf weighting The vector space model tf-idf weighting The tf-idf weight of a term is the product of its tf weight and its idf weight. wt,d = (1 + log tft,d) · log N dft tf-weight idf-weight Best known weighting scheme in information retrieval Note: the “-” in tf-idf is a hyphen, not a minus sign! Alternative names: tf.idf, tf x idf Sojka, IIR Group: PV211: Scoring, term weighting, the vector space model 29 / 56 Why ranked retrieval? Term frequency tf-idf weighting The vector space model Summary: tf-idf Assign a tf-idf weight for each term t in each document d: wt,d = (1 + log tft,d ) · log N dft The tf-idf weight . . . . . . increases with the number of occurrences within a document. (term frequency) . . . increases with the rarity of the term in the collection. (inverse document frequency) Sojka, IIR Group: PV211: Scoring, term weighting, the vector space model 30 / 56 Why ranked retrieval? Term frequency tf-idf weighting The vector space model Exercise: Term, collection and document frequency Quantity Symbol Definition term frequency tft,d number of occurrences of t in d document frequency dft number of documents in the collection that t occurs in collection frequency cft total number of occurrences of t in the collection Relationship between df and cf? Relationship between tf and cf? Relationship between tf and df? Sojka, IIR Group: PV211: Scoring, term weighting, the vector space model 31 / 56 Why ranked retrieval? Term frequency tf-idf weighting The vector space model Binary incidence matrix Anthony Julius The Hamlet Othello Macbeth . . . and Caesar Tempest Cleopatra Anthony 1 1 0 0 0 1 Brutus 1 1 0 1 0 0 Caesar 1 1 0 1 1 1 Calpurnia 0 1 0 0 0 0 Cleopatra 1 0 0 0 0 0 mercy 1 0 1 1 1 1 worser 1 0 1 1 1 0 . . . Each document is represented as a binary vector ∈ {0, 1}dim(V ). Sojka, IIR Group: PV211: Scoring, term weighting, the vector space model 33 / 56 Why ranked retrieval? Term frequency tf-idf weighting The vector space model Count matrix Anthony Julius The Hamlet Othello Macbeth . . . and Caesar Tempest Cleopatra Anthony 157 73 0 0 0 1 Brutus 4 157 0 2 0 0 Caesar 232 227 0 2 1 0 Calpurnia 0 10 0 0 0 0 Cleopatra 57 0 0 0 0 0 mercy 2 0 3 8 5 8 worser 2 0 1 1 1 5 . . . Each document is now represented as a count vector ∈ Ndim(V ). Sojka, IIR Group: PV211: Scoring, term weighting, the vector space model 34 / 56 Why ranked retrieval? Term frequency tf-idf weighting The vector space model Binary → count → weight matrix Anthony Julius The Hamlet Othello Macbeth . . . and Caesar Tempest Cleopatra Anthony 5.25 3.18 0.0 0.0 0.0 0.35 Brutus 1.21 6.10 0.0 1.0 0.0 0.0 Caesar 8.59 2.54 0.0 1.51 0.25 0.0 Calpurnia 0.0 1.54 0.0 0.0 0.0 0.0 Cleopatra 2.85 0.0 0.0 0.0 0.0 0.0 mercy 1.51 0.0 1.90 0.12 5.25 0.88 worser 1.37 0.0 0.11 4.15 0.25 1.95 . . . Each document is now represented as a real-valued vector of tf-idf weights ∈ R|V |. Sojka, IIR Group: PV211: Scoring, term weighting, the vector space model 35 / 56 Why ranked retrieval? Term frequency tf-idf weighting The vector space model Documents as vectors Each document is now represented as a real-valued vector of tf-idf weights ∈ R|V |. So we have a |V |-dimensional real-valued vector space. Terms are axes of the space. Documents are points or vectors in this space. Very high-dimensional: tens of millions of dimensions when you apply this to web search engines Each vector is very sparse - most entries are zero. Sojka, IIR Group: PV211: Scoring, term weighting, the vector space model 36 / 56 Why ranked retrieval? Term frequency tf-idf weighting The vector space model Queries as vectors Key idea 1: do the same for queries: represent them as vectors in the high-dimensional space Key idea 2: Rank documents according to their proximity to the query proximity = similarity proximity ≈ negative distance Recall: We’re doing this because we want to get away from the you’re-either-in-or-out, feast-or-famine Boolean model. Instead: rank relevant documents higher than nonrelevant documents. Sojka, IIR Group: PV211: Scoring, term weighting, the vector space model 37 / 56 Why ranked retrieval? Term frequency tf-idf weighting The vector space model How do we formalize vector space similarity? First cut: (negative) distance between two points ( = distance between the end points of the two vectors) Euclidean distance? Euclidean distance is a bad idea . . . . . . because Euclidean distance is large for vectors of different lengths. Sojka, IIR Group: PV211: Scoring, term weighting, the vector space model 38 / 56 Why ranked retrieval? Term frequency tf-idf weighting The vector space model Why distance is a bad idea 0 1 0 1 rich poor q:[rich poor] d1:Ranks of starving poets swell d2:Rich poor gap grows d3:Record baseball salaries in 2010 The Euclidean distance of q and d2 is large although the distribution of terms in the query q and the distribution of terms in the document d2 are very similar. Questions about basic vector space setup? Sojka, IIR Group: PV211: Scoring, term weighting, the vector space model 39 / 56 Why ranked retrieval? Term frequency tf-idf weighting The vector space model Use angle instead of distance Rank documents according to angle with query Thought experiment: take a document d and append it to itself. Call this document d′. d′ is twice as long as d. “Semantically” d and d′ have the same content. The angle between the two documents is 0, corresponding to maximal similarity . . . . . . even though the Euclidean distance between the two documents can be quite large. Sojka, IIR Group: PV211: Scoring, term weighting, the vector space model 40 / 56 Why ranked retrieval? Term frequency tf-idf weighting The vector space model From angles to cosines The following two notions are equivalent. Rank documents according to the angle between query and document in decreasing order Rank documents according to cosine(query,document) in increasing order Cosine is a monotonically decreasing function of the angle for the interval [0◦, 180◦] Sojka, IIR Group: PV211: Scoring, term weighting, the vector space model 41 / 56 Why ranked retrieval? Term frequency tf-idf weighting The vector space model Cosine Sojka, IIR Group: PV211: Scoring, term weighting, the vector space model 42 / 56 Why ranked retrieval? Term frequency tf-idf weighting The vector space model Length normalization How do we compute the cosine? A vector can be (length-) normalized by dividing each of its components by its length – here we use the L2 norm: ||x||2 = i x2 i This maps vectors onto the unit sphere . . . . . . since after normalization: ||x||2 = i x2 i = 1.0 As a result, longer documents and shorter documents have weights of the same order of magnitude. Effect on the two documents d and d′ (d appended to itself) from earlier slide: they have identical vectors after length-normalization. Sojka, IIR Group: PV211: Scoring, term weighting, the vector space model 43 / 56 Why ranked retrieval? Term frequency tf-idf weighting The vector space model Cosine similarity between query and document cos(q, d) = sim(q, d) = q · d |q||d| = |V | i=1 qi di |V | i=1 q2 i |V | i=1 d2 i qi is the tf-idf weight of term i in the query. di is the tf-idf weight of term i in the document. |q| and |d| are the lengths of q and d. This is the cosine similarity of q and d . . . . . . or, equivalently, the cosine of the angle between q and d. Sojka, IIR Group: PV211: Scoring, term weighting, the vector space model 44 / 56 Why ranked retrieval? Term frequency tf-idf weighting The vector space model Cosine for normalized vectors For normalized vectors, the cosine is equivalent to the dot product or scalar product. cos(q, d) = q · d = i qi · di (if q and d are length-normalized). Sojka, IIR Group: PV211: Scoring, term weighting, the vector space model 45 / 56 Why ranked retrieval? Term frequency tf-idf weighting The vector space model Cosine similarity illustrated 0 1 0 1 rich poor v(q) v(d1) v(d2) v(d3) θ Sojka, IIR Group: PV211: Scoring, term weighting, the vector space model 46 / 56 Why ranked retrieval? Term frequency tf-idf weighting The vector space model Cosine: Example How similar are these novels? SaS: Sense and Sensibility PaP: Pride and Prejudice WH: Wuthering Heights term frequencies (counts) term SaS PaP WH affection 115 58 20 jealous 10 7 11 gossip 2 0 6 wuthering 0 0 38 Sojka, IIR Group: PV211: Scoring, term weighting, the vector space model 47 / 56 Why ranked retrieval? Term frequency tf-idf weighting The vector space model Cosine: Example term frequencies (counts) term SaS PaP WH affection 115 58 20 jealous 10 7 11 gossip 2 0 6 wuthering 0 0 38 log frequency weighting term SaS PaP WH affection 3.06 2.76 2.30 jealous 2.0 1.85 2.04 gossip 1.30 0 1.78 wuthering 0 0 2.58 (To simplify this example, we don’t do idf weighting.) Sojka, IIR Group: PV211: Scoring, term weighting, the vector space model 48 / 56 Why ranked retrieval? Term frequency tf-idf weighting The vector space model Cosine: Example log frequency weighting term SaS PaP WH affection 3.06 2.76 2.30 jealous 2.0 1.85 2.04 gossip 1.30 0 1.78 wuthering 0 0 2.58 log frequency weighting & cosine normalization term SaS PaP WH affection 0.789 0.832 0.524 jealous 0.515 0.555 0.465 gossip 0.335 0.0 0.405 wuthering 0.0 0.0 0.588 cos(SaS,PaP) ≈ 0.789 ∗ 0.832 + 0.515 ∗ 0.555 + 0.335 ∗ 0.0 + 0.0 ∗ 0.0 ≈ 0.94. cos(SaS,WH) ≈ 0.79 cos(PaP,WH) ≈ 0.69 Why do we have cos(SaS,PaP) > cos(SAS,WH)? Sojka, IIR Group: PV211: Scoring, term weighting, the vector space model 49 / 56 Why ranked retrieval? Term frequency tf-idf weighting The vector space model Computing the cosine score CosineScore(q) 1 float Scores[N] = 0 2 float Length[N] 3 for each query term t 4 do calculate wt,q and fetch postings list for t 5 for each pair(d, tft,d ) in postings list 6 do Scores[d]+ = wt,d × wt,q 7 Read the array Length 8 for each d 9 do Scores[d] = Scores[d]/Length[d] 10 return Top K components of Scores[] Sojka, IIR Group: PV211: Scoring, term weighting, the vector space model 50 / 56 Why ranked retrieval? Term frequency tf-idf weighting The vector space model Components of tf-idf weighting Term frequency Document frequency Normalization n (natural) tft,d n (no) 1 n (none) 1 l (logarithm) 1 + log(tft,d) t (idf) log N dft c (cosine) 1√ w2 1 +w2 2 +...+w2 M a (augmented) 0.5 + 0.5×tft,d maxt (tft,d ) p (prob idf) max{0, log N−dft dft } u (pivoted unique) 1/u b (boolean) 1 if tft,d > 0 0 otherwise b (byte size) 1/CharLengthα , α < 1 L (log ave) 1+log(tft,d ) 1+log(avet∈d (tft,d )) Best known combination of weighting options Default: no weighting Sojka, IIR Group: PV211: Scoring, term weighting, the vector space model 51 / 56 Why ranked retrieval? Term frequency tf-idf weighting The vector space model tf-idf example We often use different weightings for queries and documents. Notation: ddd.qqq Example: lnc.ltn document: logarithmic tf, no df weighting, cosine normalization query: logarithmic tf, idf, no normalization Isn’t it bad to not idf-weight the document? Example query: “best car insurance” Example document: “car insurance auto insurance” Sojka, IIR Group: PV211: Scoring, term weighting, the vector space model 52 / 56 Why ranked retrieval? Term frequency tf-idf weighting The vector space model tf-idf example: lnc.ltn Query: “best car insurance”. Document: “car insurance auto insurance”. word query document product tf-raw tf-wght df idf weight tf-raw tf-wght weight n’lized auto 0 0 5000 2.3 0 1 1 1 0.52 0 best 1 1 50000 1.3 1.3 0 0 0 0 0 car 1 1 10000 2.0 2.0 1 1 1 0.52 1.04 insurance 1 1 1000 3.0 3.0 2 1.3 1.3 0.68 2.04 Key to columns: tf-raw: raw (unweighted) term frequency, tf-wght: logarithmically weighted term frequency, df: document frequency, idf: inverse document frequency, weight: the final weight of the term in the query or document, n’lized: document weights after cosine normalization, product: the product of final query weight and final document weight √ 12 + 02 + 12 + 1.32 ≈ 1.92 1/1.92 ≈ 0.52 1.3/1.92 ≈ 0.68 Final similarity score between query and document: i wqi · wdi = 0 + 0 + 1.04 + 2.04 = 3.08 Questions? Sojka, IIR Group: PV211: Scoring, term weighting, the vector space model 53 / 56 Why ranked retrieval? Term frequency tf-idf weighting The vector space model Summary: Ranked retrieval in the vector space model Represent the query as a weighted tf-idf vector Represent each document as a weighted tf-idf vector Compute the cosine similarity between the query vector and each document vector Rank documents with respect to the query Return the top K (e.g., K = 10) to the user Sojka, IIR Group: PV211: Scoring, term weighting, the vector space model 54 / 56 Why ranked retrieval? Term frequency tf-idf weighting The vector space model Take-away today Ranking search results: why it is important (as opposed to just presenting a set of unordered Boolean results) Term frequency: This is a key ingredient for ranking. Tf-idf ranking: best known traditional ranking scheme Vector space model: One of the most important formal models for information retrieval (along with Boolean and probabilistic models) Sojka, IIR Group: PV211: Scoring, term weighting, the vector space model 55 / 56 Why ranked retrieval? Term frequency tf-idf weighting The vector space model Resources Chapter 6 of IIR Resources at https://www.fi.muni.cz/~sojka/PV211/ and http://cislmu.org, materials in MU IS and FI MU library Vector space for dummies Exploring the similarity space (Moffat and Zobel, 2005) Okapi BM25 (a state-of-the-art weighting method, 11.4.3 of IIR) Sojka, IIR Group: PV211: Scoring, term weighting, the vector space model 56 / 56