PV211: Introduction to Information Retrieval <https://www.fi.muni.cz/~sojka/PV211>

> IIR 13: Text Classification & Naive Bayes Handout version

Petr Sojka, Hinrich Schütze et al.

Faculty of Informatics, Masaryk University, Brno Center for Information and Language Processing, University of Munich

2024-04-25

(compiled on 2024-04-24 10:06:55)

Overview

Take-away today

- Text classification: definition & relevance to information retrieval
- Naive Bayes: simple baseline text classifier
- Theory: derivation of Naive Bayes classification rule & analysis
- \bullet Evaluation of text classification: how do we know it worked / didn't work?

[Text classification](#page-3-0) [Naive Bayes](#page-13-0) [NB theory](#page-28-0) [Evaluation of TC](#page-38-0)

A text classification task: Email spam filtering

From: '''' <takworlld@hotmail.com> Subject: real estate is the only way... gem oalvgkay

Anyone can buy real estate with no money down

Stop paying rent TODAY !

There is no need to spend hundreds or even thousands for similar courses

I am 22 years old and I have already purchased 6 properties using the methods outlined in this truly INCREDIBLE ebook.

Change your life NOW !

===

Click Below to order:

http://www.wholesaledaily.com/sales/nmd.htm

===

How would you write a program that would automatically detect and delete this type of message?

[Sojka, IIR Group: PV211: Text Classification & Naive Bayes](#page-0-0) 5 / 52

Formal definition of TC: Training

Given:

- \bullet A document space $\mathbb X$
	- Documents are represented in this space typically some type of high-dimensional space.
- A fixed set of classes $\mathbb{C} = \{c_1, c_2, \ldots, c_J\}$
	- The classes are human-defined for the needs of an application (e.g., spam vs. nonspam).
- A training set D of labeled documents. Each labeled document $\langle d, c \rangle \in \mathbb{X} \times \mathbb{C}$

Using a learning method or learning algorithm, we then wish to learn a classifier *γ* that maps documents to classes:

$$
\gamma:\mathbb{X}\to\mathbb{C}
$$

[Text classification](#page-3-0) [Naive Bayes](#page-13-0) [NB theory](#page-28-0) [Evaluation of TC](#page-38-0)

Formal definition of TC: Application/Testing

Given: a description $d \in \mathbb{X}$ of a document

Determine: $\gamma(d) \in \mathbb{C}$, that is, the class that is most appropriate for d

Topic classification

Find examples of uses of text classification in information retrieval

Examples of how search engines use classification

- Language identification (classes: English vs. French, etc.)
- The automatic detection of spam pages (spam vs. nonspam)
- Sentiment detection: is a movie or product review positive or negative (positive vs. negative)
- Topic-specific or vertical search restrict search to a "vertical" like "related to health" (relevant to vertical vs. not)

Classification methods: 1. Manual

- Manual classification was used by Yahoo in the beginning of the web. Also: MathSciNet (MSC), DMOZ – the Open Directory Project, PubMed
- Very accurate if job is done by experts.
- **•** Consistent when the problem size and team is small.
- **•** Scaling manual classification is difficult and expensive.
- $\bullet \rightarrow$ We need automatic methods for classification.

Classification methods: 2. Rule-based

- E.g., Google Alerts is rule-based classification.
- There are IDE-type development environments for writing very complex rules efficiently. (e.g., Verity)
- **•** Often: Boolean combinations (as in Google Alerts).
- Accuracy is very high if a rule has been carefully refined over time by a subject expert.
- Building and maintaining rule-based classification systems is cumbersome and expensive.

[Text classification](#page-3-0) [Naive Bayes](#page-13-0) [NB theory](#page-28-0) [Evaluation of TC](#page-38-0)

A Verity topic (a complex classification rule)

[Sojka, IIR Group: PV211: Text Classification & Naive Bayes](#page-0-0) 13 / 52 and 13 / 52

Classification methods: 3. Statistical/Probabilistic

- This was our definition of the classification problem text classification as a learning problem.
- (i) Supervised learning of the classification function *γ* and (ii) application of γ to classifying new documents.
- We will look at two methods for doing this: Naive Bayes and SVMs
- No free lunch: requires hand-classified training data.
- But this manual classification can be done by non-experts.

[Text classification](#page-3-0) **Naive Baves NB** theory **Evaluation of TC**

The Naive Bayes classifier

- The Naive Bayes classifier is a probabilistic classifier.
- We compute the probability of a document d being in a class c as follows:

$$
P(c|d) \propto P(c) \prod_{1 \leq k \leq n_d} P(t_k|c)
$$

- \bullet n_d is the length of the document. (number of tokens)
- $P(t_k | c)$ is the conditional probability of term t_k occurring in a document of class c
- $P(t_k | c)$ as a measure of how much evidence t_k contributes that c is the correct class.
- \bullet $P(c)$ is the prior probability of c.
- If a document's terms do not provide clear evidence for one class vs. another, we choose the c with highest $P(c)$.

Maximum a posteriori class

- Our goal in Naive Bayes classification is to find the "best" class.
- The best class is the most likely or maximum a posteriori (MAP) class c_{man} :

$$
c_{\text{map}} = \underset{c \in \mathbb{C}}{\arg \max} \ \hat{P}(c|d) = \underset{c \in \mathbb{C}}{\arg \max} \ \ \hat{P}(c) \prod_{1 \leq k \leq n_d} \hat{P}(t_k|c)
$$

 \bullet We write \hat{P} for P since these values are estimates from the training set.

- Multiplying lots of small probabilities can result in floating point underflow.
- Since $log(xy) = log(x) + log(y)$, we can sum log probabilities instead of multiplying probabilities.
- Since log is a monotonic function, the class with the highest score does not change.
- So what we usually compute in practice is:

$$
c_{\mathsf{map}} = \arg\max_{c \in \mathbb{C}} \left[\log \hat{P}(c) + \sum_{1 \leq k \leq n_d} \log \hat{P}(t_k|c) \right]
$$

[Text classification](#page-3-0) **Naive Baves NB** theory **Evaluation of TC**

Naive Bayes classifier

• Classification rule:

$$
c_{\mathsf{map}} = \arg\max_{c \in \mathbb{C}} \left[\log \hat{P}(c) + \sum_{1 \leq k \leq n_d} \log \hat{P}(t_k|c) \right]
$$

- Simple interpretation:
	- Each conditional parameter $\log \hat{P}(t_k | c)$ is a weight that indicates how good an indicator t_k is for c.
	- The prior $log \hat{P}(c)$ is a weight that indicates the relative frequency of c.
	- The sum of log prior and term weights is then a measure of how much evidence there is for the document being in the class.
	- We select the class with the most evidence.

[Text classification](#page-3-0) **[Naive Bayes](#page-13-0) NB** theory **Evaluation of TC**

Parameter estimation take 1: Maximum likelihood

- **•** Estimate parameters $\hat{P}(c)$ and $\hat{P}(t_k|c)$ from train data: How?
- Prior:

$$
\hat{P}(c) = \frac{N_c}{N}
$$

 \bullet N_c : number of docs in class c; N: total number of docs

• Conditional probabilities:

$$
\hat{P}(t|c) = \frac{\mathcal{T}_{ct}}{\sum_{t' \in V} \mathcal{T}_{ct'}}
$$

- \bullet τ_{ct} is the number of tokens of t in training documents from class c (includes multiple occurrences)
- We have made a Naive Bayes independence assumption here: $\hat{P}(X_{k_1} = t|c) = \hat{P}(X_{k_2} = t|c)$, independent of position

[Text classification](#page-3-0) **Naive Baves** [NB theory](#page-28-0) Evaluation of TC

The problem with maximum likelihood estimates: Zeros

 $P(China|d) \propto P(China) \cdot P(B \text{ELJING}|China) \cdot P(\text{AND}|China)$ · P(Taipei|China) · P(join|China) · P(WTO|China)

 \bullet If WTO never occurs in class China in the train set: $\hat{P}(\text{WTO}| \textit{China}) = \frac{\tau_{\textit{China},\text{WTO}}}{\sum_{\tau_{\text{min}}}$ $\frac{I_{\text{China, WTO}}}{\sum_{t' \in V} \mathcal{T}_{\text{China}, t'}} = \frac{0}{\sum_{t' \in V} \mathcal{T}_{\text{total}}}$ $\sum_{t' \in V}$ $\tau_{\text{China}, t'}$

[Sojka, IIR Group: PV211: Text Classification & Naive Bayes](#page-0-0) 21 / 52

 $= 0$

The problem with maximum likelihood estimates: Zeros (cont)

If there are no occurrences of WTO in documents in class China, we get a zero estimate:

$$
\hat{P}(\text{WTO}| \textit{China}) = \frac{\tau_{\textit{China}, \text{WTO}}}{\sum_{t' \in V} \tau_{\textit{China}, t'}} = 0
$$

 $\bullet \rightarrow$ We will get $P(China|d) = 0$ for any document that contains WTO

To avoid zeros: Add-one smoothing

• Before:

$$
\hat{P}(t|c) = \frac{T_{ct}}{\sum_{t' \in V} T_{ct'}}
$$

• Now: Add one to each count to avoid zeros:

$$
\hat{P}(t|c) = \frac{T_{ct}+1}{\sum_{t' \in V} (T_{ct'}+1)} = \frac{T_{ct}+1}{(\sum_{t' \in V} T_{ct'})+B}
$$

 \bullet B is the number of bins – in this case the number of different words or the size of the vocabulary $|V| = M$

Naive Bayes: Summary

- Estimate parameters from the training corpus using add-one smoothing
- For a new document, for each class, compute sum of (i) log of prior and (ii) logs of conditional probabilities of the terms
- Assign the document to the class with the largest score

Naive Bayes: Training

TrainMultinomialNB(C*,* D)

- $1 \quad V \leftarrow \text{EXTRACTVOCABULARY}(\mathbb{D})$
- 2 $N \leftarrow \text{COUNTDocs}(\mathbb{D})$
- 3 **for each** $c \in \mathbb{C}$
- 4 **do** $N_c \leftarrow \text{COUNTDocsINCLASS}(\mathbb{D}, c)$

5 prior
$$
[c] \leftarrow N_c/N
$$

- 6 $text_c \leftarrow \text{CONCATENATETEXTOFALLDocsINCLASS(D, c)}$
- 7 **for each** $t \in V$
- 8 **do** $T_{ct} \leftarrow \text{COUNTTOKENSOFTERM}(text_c, t)$
- 9 **for each** $t \in V$

10 **do**
$$
condprob[t][c] \leftarrow \frac{T_{ct}+1}{\sum_{t'}(T_{ct'}+1)}
$$

11 **return** V *,* prior*,* condprob

Naive Bayes: Testing

ApplyMultinomialNB(C*,*V *,* prior*,* condprob*,* d)

- $1 W \leftarrow \text{EXTRACTTOKENSFROMDOC}(V, d)$
- 2 **for each** $c \in \mathbb{C}$
- 3 **do** score[c] \leftarrow log prior[c]
- 4 **for each** $t \in W$
- 5 **do** score[c] + = \log condprob[t][c]

```
6 return arg max_{c \in \mathbb{C}} score[c]
```


Estimate parameters of Naive Bayes classifier

• Classify test document

Example: Parameter estimates

$$
\begin{aligned} \text{Priors: } \hat{P}(c) &= 3/4 \text{ and } \hat{P}(\overline{c}) = 1/4 \\ \text{Conditional probabilities:} \end{aligned}
$$

$$
\hat{P}(\text{CHINESE}|c) = (5+1)/(8+6) = 6/14 = 3/7
$$
\n
$$
\hat{P}(\text{ToKYO}|c) = \hat{P}(\text{JAPAN}|c) = (0+1)/(8+6) = 1/14
$$
\n
$$
\hat{P}(\text{CHINESE}|\overline{c}) = (1+1)/(3+6) = 2/9
$$
\n
$$
\hat{P}(\text{ToKYO}|\overline{c}) = \hat{P}(\text{JAPAN}|\overline{c}) = (1+1)/(3+6) = 2/9
$$

The denominators are $(8 + 6)$ and $(3 + 6)$ because the lengths of text_c and text_c are 8 and 3, respectively, and because the constant B is 6 as the vocabulary consists of six terms.

Example: Classification

$$
\hat{P}(c|d_5) \propto 3/4 \cdot (3/7)^3 \cdot 1/14 \cdot 1/14 \approx 0.0003
$$

$$
\hat{P}(\overline{c}|d_5) \propto 1/4 \cdot (2/9)^3 \cdot 2/9 \cdot 2/9 \approx 0.0001
$$

Thus, the classifier assigns the test document to $c = China$. The reason for this classification decision is that the three occurrences of the positive indicator CHINESE in d_5 outweigh the occurrences of the two negative indicators Japan and Tokyo.

Time complexity of Naive Bayes

testing $\Theta(L_a + |\mathbb{C}|M_a) = \Theta(|\mathbb{C}|M_a)$

- \bullet L_{ave} : average length of a training doc, L_{a} : length of the test doc, M_a : number of distinct terms in the test doc, \mathbb{D} : training set, V : vocabulary, \mathbb{C} : set of classes
- $\Theta(|\mathbb{D}|L_{\text{ave}})$ is the time it takes to compute all counts.
- $\Theta(|\mathbb{C}||V|)$ is the time it takes to compute the parameters from the counts.
- **•** Generally: $|\mathbb{C}||V| < |\mathbb{D}|L_{ave}$
- Test time is also linear (in the length of the test document).
- Thus: Naive Bayes is linear in the size of the training set (training) and the test document (testing). This is optimal.

Naive Bayes: Analysis

- Now we want to gain a better understanding of the properties of Naive Bayes.
- We will formally derive the classification rule . . .
- ... and make our assumptions explicit.

Derivation of Naive Bayes rule

We want to find the class that is most likely given the document:

$$
c_{\text{map}} = \underset{c \in \mathbb{C}}{\text{arg max}} P(c|d)
$$

Apply Bayes rule
$$
P(A|B) = \frac{P(B|A)P(A)}{P(B)}
$$
:

$$
c_{\rm map} = \arg\max_{c \in \mathbb{C}} \frac{P(d|c)P(c)}{P(d)}
$$

Drop denominator since $P(d)$ is the same for all classes:

$$
c_{\rm map} = \argmax_{c \in \mathbb{C}} P(d|c)P(c)
$$

Too many parameters / sparseness

[Text classification](#page-3-0) Maive Bayes **[NB theory](#page-28-0)** [Evaluation of TC](#page-38-0)

$$
c_{\text{map}} = \underset{c \in \mathbb{C}}{\arg \max} P(d|c)P(c)
$$

=
$$
\underset{c \in \mathbb{C}}{\arg \max} P(\langle t_1, \ldots, t_k, \ldots, t_{n_d} \rangle | c)P(c)
$$

- There are too many parameters $P(\langle t_1,\ldots,t_k,\ldots,t_{n_d}\rangle|\mathbf{c})$, one for each unique combination of a class and a sequence of words.
- We would need a very, very large number of training examples to estimate that many parameters.
- This is the problem of data sparseness.

Naive Bayes conditional independence assumption

To reduce the number of parameters to a manageable size, we make the Naive Bayes conditional independence assumption:

$$
P(d|c) = P(\langle t_1,\ldots,t_{n_d}\rangle|c) = \prod_{1\leq k\leq n_d} P(X_k = t_k|c)
$$

We assume that the probability of observing the conjunction of attributes is equal to the product of the individual probabilities $P(X_k = t_k|c)$. Recall from earlier the estimates for these conditional probabilities: $\hat{P}(t|\mathbf{\emph{c}})=\frac{T_{c t}+1}{(\sum_{t' \in \mathit{V}} T_{c t'})+B}$

Generative model

 $P(c|d) \propto P(c) \prod_{1 \leq k \leq n_d} P(t_k|c)$

- Generate a class with probability $P(c)$
- Generate each of the words (in their respective positions), conditional on the class, but independent of each other, with probability $P(t_k | c)$
- To classify docs, we "reengineer" this process and find the class that is most likely to have generated the doc.

Second independence assumption

•
$$
\hat{P}(X_{k_1} = t | c) = \hat{P}(X_{k_2} = t | c)
$$

- \bullet For example, for a document in the class UK, the probability of generating QUEEN in the first position of the document is the same as generating it in the last position.
- The two independence assumptions amount to the bag of words model.

[Text classification](#page-3-0) [Naive Bayes](#page-13-0) **[NB theory](#page-28-0)** [Evaluation of TC](#page-38-0)

A different Naive Bayes model: Bernoulli model

[Text classification](#page-3-0) Maive Bayes **[NB theory](#page-28-0)** [Evaluation of TC](#page-38-0)

Violation of Naive Bayes independence assumptions

• Conditional independence:

$$
P(\langle t_1,\ldots,t_{n_d}\rangle|c)=\prod_{1\leq k\leq n_d}P(X_k=t_k|c)
$$

• Positional independence:

$$
\bullet \ \hat{P}(X_{k_1}=t|c)=\hat{P}(X_{k_2}=t|c)
$$

- The independence assumptions do not really hold of documents written in natural language.
- **•** Exercise
	- Examples for why conditional independence assumption is not really true?
	- Examples for why positional independence assumption is not really true?
- **How can Naive Bayes work if it makes such inappropriate** assumptions?

[Text classification](#page-3-0) Maive Bayes **[NB theory](#page-28-0)** [Evaluation of TC](#page-38-0)

Why does Naive Bayes work?

- Naive Bayes can work well even though conditional independence assumptions are badly violated.
- Example:

- Double counting of evidence causes underestimation (0.01) and overestimation (0.99).
- Classification is about predicting the correct class and not about accurately estimating probabilities.
- Naive Bayes is terrible for correct estimation . . .
- . . . but if often performs well at accurate prediction (choosing the correct class).

Naive Bayes is not so naive

- Naive Bayes has won some bakeoffs (e.g., [KDD-CUP 97\)](http://www.kdd.org/kdd-cup/view/kdd-cup-1997/Results)
- More robust to irrelevant features than some more complex learning methods
- More robust to concept drift (changing of definition of class over time) than some more complex learning methods
- Better than methods like decision trees when we have many equally important features
- A good dependable baseline for text classification (but not the best)
- Optimal if independence assumptions hold (never true for text, but true for some domains)
- Very fast
- Low storage requirements

Evaluation on Reuters

[Text classification](#page-3-0) [Naive Bayes](#page-13-0) [NB theory](#page-28-0) [Evaluation of TC](#page-38-0)

Example: The Reuters collection

A Reuters document

REUTERS **a**

You are here: Home > News > Science > Article

Go to a Section: U.S. International Business Markets Politics Entertainment Technology Sports Oddly Enoug Extreme conditions create rare Antarctic clouds

Tue Aug 1, 2006 3:20am E

Email This Article | Print This Article | Reprints

 -1 Text

SYDNEY (Reuters) - Rare, mother-of-pearl colored clouds caused by extreme weather conditions above Antarctica are a possible indication of global warming. Australian scientists said on Tuesday

Known as nacreous clouds, the spectacular formations showing delicate wisps of colors were photographed in the sky over an Australian

Evaluating classification

- Evaluation must be done on test data that are independent of the training data, i.e., training and test sets are disjoint.
- It's easy to get good performance on a test set that was available to the learner during training (e.g., just memorize the test set).
- Measures: Precision, recall, F_1 , classification accuracy
- Average measures over multiple training and test sets (splits of the overall data) for best results.

Precision P and recall R

TP, FP, FN, TN are counts of documents. The sum of these four counts is the total number of documents.

$$
\begin{array}{rcl}\n\text{precision:} P & = & TP / (TP + FP) \\
\text{recall:} R & = & TP / (TP + FN)\n\end{array}
$$

A combined measure: F

- \bullet F_1 allows us to trade off precision against recall.
- \bullet $F_1 = \frac{1}{11}$ $=\frac{2PR}{R}$ 1 $\frac{1}{P} + \frac{1}{2}$ $\frac{1}{R}$ $P + R$ 2 2
- This is the harmonic mean of P and $R: \, \frac{1}{F} = \frac{1}{2}$ $\frac{1}{2}(\frac{1}{P}+\frac{1}{R})$

Averaging: Micro vs. Macro

- We now have an evaluation measure (F_1) for one class.
- But we also want a single number that measures the aggregate performance over all classes in the collection.
- **•** Macroaveraging
	- Compute F_1 for each of the C classes
	- Average these C numbers
- **•** Microaveraging
	- Compute TP, FP, FN for each of the C classes
	- \bullet Sum these C numbers (e.g., all TP to get aggregate TP)
	- Compute F_1 for aggregate TP, FP, FN

Naive Bayes vs. other methods

Evaluation measure: F_1

Naive Bayes does pretty well, but some methods beat it consistently (e.g., SVM).

Take-away today

- Text classification: definition & relevance to information retrieval
- Naive Bayes: simple baseline text classifier
- Theory: derivation of Naive Bayes classification rule & analysis
- \bullet Evaluation of text classification: how do we know it worked / didn't work?

Resources

- Chapter 13 of IIR
- Resources at <https://www.fi.muni.cz/~sojka/PV211/> and <http://cislmu.org>, materials in MU IS and FI MU library
	- Weka: A data mining software package that includes an implementation of Naive Bayes
	- Reuters-21578 text classification evaluation set
	- Vulgarity classifier fail