
A simple crawler A real crawler

PV211: Introduction to Information Retrieval
https://www.fi.muni.cz/~sojka/PV211

IIR 20: Crawling
Handout version

Petr Sojka, Hinrich Schütze et al.

Faculty of Informatics, Masaryk University, Brno
Center for Information and Language Processing, University of Munich

2024-05-15
(compiled on 2024-05-06 13:41:14)

Sojka, IIR Group: PV211: Crawling 1 / 27

https://www.fi.muni.cz/~sojka/PV211


A simple crawler A real crawler

How hard can crawling be?

Web search engines must crawl their documents.

Getting the content of the documents is easier for many other
IR systems.

E.g., indexing all files on your hard disk: just do a recursive
descent on your file system

Ok: for web IR, getting the content of the documents takes
longer . . .

. . . because of latency.

But is that really a design/systems challenge?

Sojka, IIR Group: PV211: Crawling 3 / 27



A simple crawler A real crawler

Basic crawler operation

Initialize queue with URLs of known seed pages

Repeat

Take URL from queue
Fetch and parse page
Extract URLs from page
Add URLs to queue

Fundamental assumption: The web is well linked.

Sojka, IIR Group: PV211: Crawling 4 / 27



A simple crawler A real crawler

Exercise: What’s wrong with this crawler?

urlqueue := (some carefully selected set of seed urls)

while urlqueue is not empty:

myurl := urlqueue.getlastanddelete()

mypage := myurl.fetch()

fetchedurls.add(myurl)

newurls := mypage.extracturls()

for myurl in newurls:

if myurl not in fetchedurls and not in urlqueue:

urlqueue.add(myurl)

addtoinvertedindex(mypage)

Sojka, IIR Group: PV211: Crawling 5 / 27



A simple crawler A real crawler

What’s wrong with the simple crawler

Scale: we need to distribute.

We can’t index everything: we need to subselect. How?

Duplicates: need to integrate duplicate detection

Spam and spider traps: need to integrate spam detection

Politeness: we need to be “nice” and space out all requests
for a site over a longer period (hours, days)

Freshness: we need to recrawl periodically.

Because of the size of the web, we can do frequent recrawls
only for a small subset.
Again, subselection problem or prioritization

Sojka, IIR Group: PV211: Crawling 6 / 27



A simple crawler A real crawler

Magnitude of the crawling problem

To fetch 20,000,000,000 pages in one month . . .

. . . we need to fetch almost 8,000 pages per second!

Actually: many more since many of the pages we attempt to
crawl will be duplicates, unfetchable, spam, etc.

Sojka, IIR Group: PV211: Crawling 7 / 27



A simple crawler A real crawler

What a crawler must do

Be polite

Don’t hit a site too often

Only crawl pages you are allowed to crawl: robots.txt

Be robust

Be immune to spider traps, duplicates, very large pages, very
large websites, dynamic pages, etc.

Sojka, IIR Group: PV211: Crawling 8 / 27



A simple crawler A real crawler

robots.txt

Protocol for giving crawlers (“robots”) limited access to a
website, originally from 1994

Examples:

User-agent: *
Disallow: /yoursite/temp/
User-agent: searchengine
Disallow: /

Important: cache the robots.txt file of each site we are
crawling

Sojka, IIR Group: PV211: Crawling 9 / 27



A simple crawler A real crawler

Example of a robots.txt (nih.gov)

User-agent: PicoSearch/1.0

Disallow: /news/information/knight/

Disallow: /nidcd/

...

Disallow: /news/research_matters/secure/

Disallow: /od/ocpl/wag/

User-agent: *

Disallow: /news/information/knight/

Disallow: /nidcd/

...

Disallow: /news/research_matters/secure/

Disallow: /od/ocpl/wag/

Disallow: /ddir/

Disallow: /sdminutes/

Sojka, IIR Group: PV211: Crawling 10 / 27



A simple crawler A real crawler

What any crawler should do

Be capable of distributed operation

Be scalable: need to be able to increase crawl rate by adding
more machines

Fetch pages of higher quality first

Continuous operation: get fresh version of already crawled
pages

Sojka, IIR Group: PV211: Crawling 11 / 27



A simple crawler A real crawler

URL frontier

URLs crawled
and parsed

URL frontier:
found, but

not yet crawled
unseen URLs

Sojka, IIR Group: PV211: Crawling 13 / 27



A simple crawler A real crawler

URL frontier

The URL frontier is the data structure that holds and manages
URLs we’ve seen, but that have not been crawled yet.

Can include multiple pages from the same host

Must avoid trying to fetch them all at the same time

Must keep all crawling threads busy

Sojka, IIR Group: PV211: Crawling 14 / 27



A simple crawler A real crawler

Basic crawl architecture

www

fetch

DNS

parse

URL frontier

content
seen?

✓

✒

✏

✑
✒✑

doc
FPs ✓

✒

✏

✑
✒✑

robots
templates ✓

✒

✏

✑
✒✑

URL
set

URL
filter

dup

URL
elim✲

✛

✲

✻

✛✲

❄
✻

✲ ✲ ✲

✛

✻
❄

✻
❄

✻
❄

Sojka, IIR Group: PV211: Crawling 15 / 27



A simple crawler A real crawler

URL normalization

Some URLs extracted from a document are relative URLs.

E.g., at http://www.fi.muni.cz/˜sojka/PV211/, we may
have p20crawl.pdf

This is the same as URL:
http://www.fi.muni.cz/˜sojka/PV211/p20crawl.pdf

During parsing, we must normalize (expand) all relative URLs.

Sojka, IIR Group: PV211: Crawling 16 / 27



A simple crawler A real crawler

Content seen

For each page fetched: check if the content is already in the
index

Check this using document fingerprints or shingles

Skip documents whose content has already been indexed

Sojka, IIR Group: PV211: Crawling 17 / 27



A simple crawler A real crawler

Distributing the crawler

Run multiple crawl threads, potentially at different nodes

Usually geographically distributed nodes

Partition hosts being crawled into nodes

Sojka, IIR Group: PV211: Crawling 18 / 27



A simple crawler A real crawler

Google data centers (wayfaring.com)

Sojka, IIR Group: PV211: Crawling 19 / 27



A simple crawler A real crawler

Distributed crawler

www

fetch

DNS

parse

URL frontier

content
seen?

✓

✒

✏

✑
✍ ✌

doc
FPs ✓

✒

✏

✑
✍ ✌

URL
set

URL
filter

host
splitter

to
other
nodes

from
other
nodes

dup

URL
elim✲

✛

✲

✻

✛✲

❄
✻

✲ ✲ ✲ ✲

✛

✻❄ ✻❄✻✻✻

✲✲✲

Sojka, IIR Group: PV211: Crawling 20 / 27



A simple crawler A real crawler

URL frontier: Two main considerations

Politeness: Don’t hit a web server too frequently

E.g., insert a time gap between successive requests to the
same server

Freshness: Crawl some pages (e.g., news sites) more often
than others

Not an easy problem: simple priority queue fails.

Sojka, IIR Group: PV211: Crawling 21 / 27



A simple crawler A real crawler

Mercator URL frontier

b. queue selector

f. queue selector & b. queue router

prioritizer

♣ ♣ ♣ ♣
B back queues:

single host on each

♣ ♣ ♣

♣

♣F front queues

1 F

1 B

❳❳❳❳❳❳③
❳❳❳❳❳❳③

✘✘✘✘✘✘✾

✘✘✘✘✘✘✾
✘✘✘✘✘✘✾
❳❳❳❳❳❳③

✏✏✏✏✏✏✮
✏✏✏✏✏✏✮

PPPPPPq

❍❍❍❍❍❥

❍❍❍❍❍❥

✟✟✟✟✟✙

❄

❄

✲✛ heap

URLs flow in from the top into
the frontier.

Front queues manage
prioritization.

Back queues enforce politeness.

Each queue is FIFO.

Sojka, IIR Group: PV211: Crawling 22 / 27



A simple crawler A real crawler

Mercator URL frontier: Front queues

Prioritizer assigns
to URL an integer
priority between 1
and F .

Then appends URL
to corresponding
queue

Heuristics for
assigning priority:
refresh rate,
PageRank, etc.

Selection from front
queues is initiated
by back queues

Pick a front queue

f. queue selector & b. queue router

prioritizer

q q q qF front queues

1 F

✏✏✏✏✏✏✏✮

✏✏✏✏✏✏✏✮

PPPPPPPq

❍❍❍❍❍❍❍❥

❍❍❍❍❍❍❍❥

✟✟✟✟✟✟✟✙

❄

Sojka, IIR Group: PV211: Crawling 23 / 27



A simple crawler A real crawler

Mercator URL frontier: Back queues

b. queue selector

f. queue selector & b. queue router

q q q q
B back queues

Single host on each

1 B

❳❳❳❳❳❳❳③
❳❳❳❳❳❳❳③

✘✘✘✘✘✘✘✾

✘✘✘✘✘✘✘✘✾

✘✘✘✘✘✘✘✘✾

❳❳❳❳❳❳❳❳③

❄

✲✛ heap

Invariant 1. Each
back queue is kept
non-empty while the
crawl is in progress.

Invariant 2. Each
back queue only
contains URLs from a
single host.

Maintain a table from
hosts to back queues.

In the heap:

One entry for each
back queue

The entry is the
earliest time te at
which the hostSojka, IIR Group: PV211: Crawling 24 / 27



A simple crawler A real crawler

Mercator URL frontier

b. queue selector

f. queue selector & b. queue router

prioritizer

♣ ♣ ♣ ♣
B back queues:

single host on each

♣ ♣ ♣

♣

♣F front queues

1 F

1 B

❳❳❳❳❳❳③
❳❳❳❳❳❳③

✘✘✘✘✘✘✾

✘✘✘✘✘✘✾
✘✘✘✘✘✘✾
❳❳❳❳❳❳③

✏✏✏✏✏✏✮
✏✏✏✏✏✏✮

PPPPPPq

❍❍❍❍❍❥

❍❍❍❍❍❥

✟✟✟✟✟✙

❄

❄

✲✛ heap

URLs flow in from the top into
the frontier.

Front queues manage
prioritization.

Back queues enforce politeness.

Each queue is FIFO.

Sojka, IIR Group: PV211: Crawling 25 / 27



A simple crawler A real crawler

Spider trap

Malicious server that generates an infinite sequence of linked
pages.

Sophisticated spider traps generate pages that are not easily
identified as dynamic.

Sojka, IIR Group: PV211: Crawling 26 / 27



A simple crawler A real crawler

Resources

Chapter 20 of IIR

Resources at https://www.fi.muni.cz/~sojka/PV211/
and http://cislmu.org, materials in MU IS and FI MU
library

Papers by NLP centre people crawling data for Sketch Engine
Paper on Mercator by Heydon et al.
Robot exclusion standard

Sojka, IIR Group: PV211: Crawling 27 / 27

https://www.fi.muni.cz/~sojka/PV211/
http://cislmu.org

	A simple crawler
	A real crawler

