
Online edition (c)
2009 Cambridge UP

An

Introduction

to

Information

Retrieval

Draft of April 1, 2009

Online edition (c)
2009 Cambridge UP

Online edition (c)
2009 Cambridge UP

An

Introduction

to

Information

Retrieval

Christopher D. Manning

Prabhakar Raghavan

Hinrich Schütze

Cambridge University Press
Cambridge, England

Online edition (c)
2009 Cambridge UP

DRAFT!

DO NOT DISTRIBUTE WITHOUT PRIOR PERMISSION

© 2009 Cambridge University Press

By Christopher D. Manning, Prabhakar Raghavan & Hinrich Schütze

Printed on April 1, 2009

Website: http://www.informationretrieval.org/

Comments, corrections, and other feedback most welcome at:

informationretrieval@yahoogroups.com

Online edition (c)
2009 Cambridge UP

DRAFT! © April 1, 2009 Cambridge University Press. Feedback welcome. v

Brief Contents

1 Boolean retrieval 1

2 The term vocabulary and postings lists 19

3 Dictionaries and tolerant retrieval 49

4 Index construction 67

5 Index compression 85

6 Scoring, term weighting and the vector space model 109

7 Computing scores in a complete search system 135

8 Evaluation in information retrieval 151

9 Relevance feedback and query expansion 177

10 XML retrieval 195

11 Probabilistic information retrieval 219

12 Language models for information retrieval 237

13 Text classification and Naive Bayes 253

14 Vector space classification 289

15 Support vector machines and machine learning on documents 319

16 Flat clustering 349

17 Hierarchical clustering 377

18 Matrix decompositions and latent semantic indexing 403

19 Web search basics 421

20 Web crawling and indexes 443

21 Link analysis 461

Online edition (c)
2009 Cambridge UP

Online edition (c)
2009 Cambridge UP

DRAFT! © April 1, 2009 Cambridge University Press. Feedback welcome. vii

Contents

List of Tables xv

List of Figures xix

Table of Notation xxvii

Preface xxxi

1 Boolean retrieval 1

1.1 An example information retrieval problem 3
1.2 A first take at building an inverted index 6
1.3 Processing Boolean queries 10
1.4 The extended Boolean model versus ranked retrieval 14
1.5 References and further reading 17

2 The term vocabulary and postings lists 19

2.1 Document delineation and character sequence decoding 19
2.1.1 Obtaining the character sequence in a document 19
2.1.2 Choosing a document unit 20

2.2 Determining the vocabulary of terms 22
2.2.1 Tokenization 22
2.2.2 Dropping common terms: stop words 27
2.2.3 Normalization (equivalence classing of terms) 28
2.2.4 Stemming and lemmatization 32

2.3 Faster postings list intersection via skip pointers 36
2.4 Positional postings and phrase queries 39

2.4.1 Biword indexes 39
2.4.2 Positional indexes 41
2.4.3 Combination schemes 43

2.5 References and further reading 45

Online edition (c)
2009 Cambridge UP

viii Contents

3 Dictionaries and tolerant retrieval 49

3.1 Search structures for dictionaries 49
3.2 Wildcard queries 51

3.2.1 General wildcard queries 53
3.2.2 k-gram indexes for wildcard queries 54

3.3 Spelling correction 56
3.3.1 Implementing spelling correction 57
3.3.2 Forms of spelling correction 57
3.3.3 Edit distance 58
3.3.4 k-gram indexes for spelling correction 60
3.3.5 Context sensitive spelling correction 62

3.4 Phonetic correction 63
3.5 References and further reading 65

4 Index construction 67

4.1 Hardware basics 68
4.2 Blocked sort-based indexing 69
4.3 Single-pass in-memory indexing 73
4.4 Distributed indexing 74
4.5 Dynamic indexing 78
4.6 Other types of indexes 80
4.7 References and further reading 83

5 Index compression 85

5.1 Statistical properties of terms in information retrieval 86
5.1.1 Heaps’ law: Estimating the number of terms 88
5.1.2 Zipf’s law: Modeling the distribution of terms 89

5.2 Dictionary compression 90
5.2.1 Dictionary as a string 91
5.2.2 Blocked storage 92

5.3 Postings file compression 95
5.3.1 Variable byte codes 96
5.3.2 γ codes 98

5.4 References and further reading 105

6 Scoring, term weighting and the vector space model 109

6.1 Parametric and zone indexes 110
6.1.1 Weighted zone scoring 112
6.1.2 Learning weights 113
6.1.3 The optimal weight g 115

6.2 Term frequency and weighting 117
6.2.1 Inverse document frequency 117
6.2.2 Tf-idf weighting 118

Online edition (c)
2009 Cambridge UP

Contents ix

6.3 The vector space model for scoring 120
6.3.1 Dot products 120
6.3.2 Queries as vectors 123
6.3.3 Computing vector scores 124

6.4 Variant tf-idf functions 126
6.4.1 Sublinear tf scaling 126
6.4.2 Maximum tf normalization 127
6.4.3 Document and query weighting schemes 128
6.4.4 Pivoted normalized document length 129

6.5 References and further reading 133

7 Computing scores in a complete search system 135

7.1 Efficient scoring and ranking 135
7.1.1 Inexact top K document retrieval 137
7.1.2 Index elimination 137
7.1.3 Champion lists 138
7.1.4 Static quality scores and ordering 138
7.1.5 Impact ordering 140
7.1.6 Cluster pruning 141

7.2 Components of an information retrieval system 143
7.2.1 Tiered indexes 143
7.2.2 Query-term proximity 144
7.2.3 Designing parsing and scoring functions 145
7.2.4 Putting it all together 146

7.3 Vector space scoring and query operator interaction 147
7.4 References and further reading 149

8 Evaluation in information retrieval 151

8.1 Information retrieval system evaluation 152
8.2 Standard test collections 153
8.3 Evaluation of unranked retrieval sets 154
8.4 Evaluation of ranked retrieval results 158
8.5 Assessing relevance 164

8.5.1 Critiques and justifications of the concept of
relevance 166

8.6 A broader perspective: System quality and user utility 168
8.6.1 System issues 168
8.6.2 User utility 169
8.6.3 Refining a deployed system 170

8.7 Results snippets 170
8.8 References and further reading 173

9 Relevance feedback and query expansion 177

Online edition (c)
2009 Cambridge UP

x Contents

9.1 Relevance feedback and pseudo relevance feedback 178
9.1.1 The Rocchio algorithm for relevance feedback 178
9.1.2 Probabilistic relevance feedback 183
9.1.3 When does relevance feedback work? 183
9.1.4 Relevance feedback on the web 185
9.1.5 Evaluation of relevance feedback strategies 186
9.1.6 Pseudo relevance feedback 187
9.1.7 Indirect relevance feedback 187
9.1.8 Summary 188

9.2 Global methods for query reformulation 189
9.2.1 Vocabulary tools for query reformulation 189
9.2.2 Query expansion 189
9.2.3 Automatic thesaurus generation 192

9.3 References and further reading 193

10 XML retrieval 195

10.1 Basic XML concepts 197
10.2 Challenges in XML retrieval 201
10.3 A vector space model for XML retrieval 206
10.4 Evaluation of XML retrieval 210
10.5 Text-centric vs. data-centric XML retrieval 214
10.6 References and further reading 216
10.7 Exercises 217

11 Probabilistic information retrieval 219

11.1 Review of basic probability theory 220
11.2 The Probability Ranking Principle 221

11.2.1 The 1/0 loss case 221
11.2.2 The PRP with retrieval costs 222

11.3 The Binary Independence Model 222
11.3.1 Deriving a ranking function for query terms 224
11.3.2 Probability estimates in theory 226
11.3.3 Probability estimates in practice 227
11.3.4 Probabilistic approaches to relevance feedback 228

11.4 An appraisal and some extensions 230
11.4.1 An appraisal of probabilistic models 230
11.4.2 Tree-structured dependencies between terms 231
11.4.3 Okapi BM25: a non-binary model 232
11.4.4 Bayesian network approaches to IR 234

11.5 References and further reading 235

12 Language models for information retrieval 237

12.1 Language models 237

Online edition (c)
2009 Cambridge UP

Contents xi

12.1.1 Finite automata and language models 237
12.1.2 Types of language models 240
12.1.3 Multinomial distributions over words 241

12.2 The query likelihood model 242
12.2.1 Using query likelihood language models in IR 242
12.2.2 Estimating the query generation probability 243
12.2.3 Ponte and Croft’s Experiments 246

12.3 Language modeling versus other approaches in IR 248
12.4 Extended language modeling approaches 250
12.5 References and further reading 252

13 Text classification and Naive Bayes 253

13.1 The text classification problem 256
13.2 Naive Bayes text classification 258

13.2.1 Relation to multinomial unigram language model 262
13.3 The Bernoulli model 263
13.4 Properties of Naive Bayes 265

13.4.1 A variant of the multinomial model 270
13.5 Feature selection 271

13.5.1 Mutual information 272
13.5.2 χ2 Feature selection 275
13.5.3 Frequency-based feature selection 277
13.5.4 Feature selection for multiple classifiers 278
13.5.5 Comparison of feature selection methods 278

13.6 Evaluation of text classification 279
13.7 References and further reading 286

14 Vector space classification 289

14.1 Document representations and measures of relatedness in
vector spaces 291

14.2 Rocchio classification 292
14.3 k nearest neighbor 297

14.3.1 Time complexity and optimality of kNN 299
14.4 Linear versus nonlinear classifiers 301
14.5 Classification with more than two classes 306
14.6 The bias-variance tradeoff 308
14.7 References and further reading 314
14.8 Exercises 315

15 Support vector machines and machine learning on documents 319

15.1 Support vector machines: The linearly separable case 320
15.2 Extensions to the SVM model 327

15.2.1 Soft margin classification 327

Online edition (c)
2009 Cambridge UP

xii Contents

15.2.2 Multiclass SVMs 330
15.2.3 Nonlinear SVMs 330
15.2.4 Experimental results 333

15.3 Issues in the classification of text documents 334
15.3.1 Choosing what kind of classifier to use 335
15.3.2 Improving classifier performance 337

15.4 Machine learning methods in ad hoc information retrieval 341
15.4.1 A simple example of machine-learned scoring 341
15.4.2 Result ranking by machine learning 344

15.5 References and further reading 346

16 Flat clustering 349

16.1 Clustering in information retrieval 350
16.2 Problem statement 354

16.2.1 Cardinality – the number of clusters 355
16.3 Evaluation of clustering 356
16.4 K-means 360

16.4.1 Cluster cardinality in K-means 365
16.5 Model-based clustering 368
16.6 References and further reading 372
16.7 Exercises 374

17 Hierarchical clustering 377

17.1 Hierarchical agglomerative clustering 378
17.2 Single-link and complete-link clustering 382

17.2.1 Time complexity of HAC 385
17.3 Group-average agglomerative clustering 388
17.4 Centroid clustering 391
17.5 Optimality of HAC 393
17.6 Divisive clustering 395
17.7 Cluster labeling 396
17.8 Implementation notes 398
17.9 References and further reading 399
17.10 Exercises 401

18 Matrix decompositions and latent semantic indexing 403

18.1 Linear algebra review 403
18.1.1 Matrix decompositions 406

18.2 Term-document matrices and singular value
decompositions 407

18.3 Low-rank approximations 410
18.4 Latent semantic indexing 412
18.5 References and further reading 417

Online edition (c)
2009 Cambridge UP

Contents xiii

19 Web search basics 421

19.1 Background and history 421
19.2 Web characteristics 423

19.2.1 The web graph 425
19.2.2 Spam 427

19.3 Advertising as the economic model 429
19.4 The search user experience 432

19.4.1 User query needs 432
19.5 Index size and estimation 433
19.6 Near-duplicates and shingling 437
19.7 References and further reading 441

20 Web crawling and indexes 443

20.1 Overview 443
20.1.1 Features a crawler must provide 443
20.1.2 Features a crawler should provide 444

20.2 Crawling 444
20.2.1 Crawler architecture 445
20.2.2 DNS resolution 449
20.2.3 The URL frontier 451

20.3 Distributing indexes 454
20.4 Connectivity servers 455
20.5 References and further reading 458

21 Link analysis 461

21.1 The Web as a graph 462
21.1.1 Anchor text and the web graph 462

21.2 PageRank 464
21.2.1 Markov chains 465
21.2.2 The PageRank computation 468
21.2.3 Topic-specific PageRank 471

21.3 Hubs and Authorities 474
21.3.1 Choosing the subset of the Web 477

21.4 References and further reading 480

Bibliography 483

Author Index 521

Index 537

Online edition (c)
2009 Cambridge UP

Online edition (c)
2009 Cambridge UP

DRAFT! © April 1, 2009 Cambridge University Press. Feedback welcome. xv

List of Tables

4.1 Typical system parameters in 2007. The seek time is the time
needed to position the disk head in a new position. The
transfer time per byte is the rate of transfer from disk to
memory when the head is in the right position. 68

4.2 Collection statistics for Reuters-RCV1. Values are rounded for
the computations in this book. The unrounded values are:
806,791 documents, 222 tokens per document, 391,523
(distinct) terms, 6.04 bytes per token with spaces and
punctuation, 4.5 bytes per token without spaces and
punctuation, 7.5 bytes per term, and 96,969,056 tokens. The
numbers in this table correspond to the third line (“case
folding”) in Table 5.1 (page 87). 70

4.3 The five steps in constructing an index for Reuters-RCV1 in
blocked sort-based indexing. Line numbers refer to Figure 4.2. 82

4.4 Collection statistics for a large collection. 82

5.1 The effect of preprocessing on the number of terms,
nonpositional postings, and tokens for Reuters-RCV1. “∆%”
indicates the reduction in size from the previous line, except
that “30 stop words” and “150 stop words” both use “case
folding” as their reference line. “T%” is the cumulative
(“total”) reduction from unfiltered. We performed stemming
with the Porter stemmer (Chapter 2, page 33). 87

5.2 Dictionary compression for Reuters-RCV1. 95

5.3 Encoding gaps instead of document IDs. For example, we
store gaps 107, 5, 43, . . . , instead of docIDs 283154, 283159,
283202, . . . for computer. The first docID is left unchanged
(only shown for arachnocentric). 96

5.4 VB encoding. 97

Online edition (c)
2009 Cambridge UP

xvi List of Tables

5.5 Some examples of unary and γ codes. Unary codes are only
shown for the smaller numbers. Commas in γ codes are for
readability only and are not part of the actual codes. 98

5.6 Index and dictionary compression for Reuters-RCV1. The
compression ratio depends on the proportion of actual text in
the collection. Reuters-RCV1 contains a large amount of XML
markup. Using the two best compression schemes, γ
encoding and blocking with front coding, the ratio
compressed index to collection size is therefore especially
small for Reuters-RCV1: (101 + 5.9)/3600 ≈ 0.03. 103

5.7 Two gap sequences to be merged in blocked sort-based
indexing 105

6.1 Cosine computation for Exercise 6.19. 132

8.1 Calculation of 11-point Interpolated Average Precision. 159

8.2 Calculating the kappa statistic. 165

10.1 RDB (relational database) search, unstructured information
retrieval and structured information retrieval. 196

10.2 INEX 2002 collection statistics. 211

10.3 INEX 2002 results of the vector space model in Section 10.3 for
content-and-structure (CAS) queries and the quantization
function Q. 213

10.4 A comparison of content-only and full-structure search in
INEX 2003/2004. 214

13.1 Data for parameter estimation examples. 261

13.2 Training and test times for NB. 261

13.3 Multinomial versus Bernoulli model. 268

13.4 Correct estimation implies accurate prediction, but accurate
prediction does not imply correct estimation. 269

13.5 A set of documents for which the NB independence
assumptions are problematic. 270

13.6 Critical values of the χ2 distribution with one degree of
freedom. For example, if the two events are independent,
then P(X2 > 6.63) < 0.01. So for X2 > 6.63 the assumption of
independence can be rejected with 99% confidence. 277

13.7 The ten largest classes in the Reuters-21578 collection with
number of documents in training and test sets. 280

Online edition (c)
2009 Cambridge UP

List of Tables xvii

13.8 Macro- and microaveraging. “Truth” is the true class and
“call” the decision of the classifier. In this example,
macroaveraged precision is
[10/(10 + 10) + 90/(10 + 90)]/2 = (0.5 + 0.9)/2 = 0.7.
Microaveraged precision is 100/(100 + 20) ≈ 0.83. 282

13.9 Text classification effectiveness numbers on Reuters-21578 for
F1 (in percent). Results from Li and Yang (2003) (a), Joachims
(1998) (b: kNN) and Dumais et al. (1998) (b: NB, Rocchio,
trees, SVM). 282

13.10 Data for parameter estimation exercise. 284

14.1 Vectors and class centroids for the data in Table 13.1. 294
14.2 Training and test times for Rocchio classification. 296
14.3 Training and test times for kNN classification. 299
14.4 A linear classifier. 303
14.5 A confusion matrix for Reuters-21578. 308

15.1 Training and testing complexity of various classifiers
including SVMs. 329

15.2 SVM classifier break-even F1 from (Joachims 2002a, p. 114). 334
15.3 Training examples for machine-learned scoring. 342

16.1 Some applications of clustering in information retrieval. 351
16.2 The four external evaluation measures applied to the

clustering in Figure 16.4. 357
16.3 The EM clustering algorithm. 371

17.1 Comparison of HAC algorithms. 395
17.2 Automatically computed cluster labels. 397

Online edition (c)
2009 Cambridge UP

Online edition (c)
2009 Cambridge UP

DRAFT! © April 1, 2009 Cambridge University Press. Feedback welcome. xix

List of Figures

1.1 A term-document incidence matrix. 4
1.2 Results from Shakespeare for the query Brutus AND Caesar

AND NOT Calpurnia. 5
1.3 The two parts of an inverted index. 7
1.4 Building an index by sorting and grouping. 8
1.5 Intersecting the postings lists for Brutus and Calpurnia from

Figure 1.3. 10
1.6 Algorithm for the intersection of two postings lists p1 and p2. 11
1.7 Algorithm for conjunctive queries that returns the set of

documents containing each term in the input list of terms. 12

2.1 An example of a vocalized Modern Standard Arabic word. 21
2.2 The conceptual linear order of characters is not necessarily the

order that you see on the page. 21
2.3 The standard unsegmented form of Chinese text using the

simplified characters of mainland China. 26
2.4 Ambiguities in Chinese word segmentation. 26
2.5 A stop list of 25 semantically non-selective words which are

common in Reuters-RCV1. 26
2.6 An example of how asymmetric expansion of query terms can

usefully model users’ expectations. 28
2.7 Japanese makes use of multiple intermingled writing systems

and, like Chinese, does not segment words. 31
2.8 A comparison of three stemming algorithms on a sample text. 34
2.9 Postings lists with skip pointers. 36
2.10 Postings lists intersection with skip pointers. 37
2.11 Positional index example. 41
2.12 An algorithm for proximity intersection of postings lists p1

and p2. 42

Online edition (c)
2009 Cambridge UP

xx List of Figures

3.1 A binary search tree. 51
3.2 A B-tree. 52
3.3 A portion of a permuterm index. 54
3.4 Example of a postings list in a 3-gram index. 55
3.5 Dynamic programming algorithm for computing the edit

distance between strings s1 and s2. 59
3.6 Example Levenshtein distance computation. 59
3.7 Matching at least two of the three 2-grams in the query bord. 61

4.1 Document from the Reuters newswire. 70
4.2 Blocked sort-based indexing. 71

4.3 Merging in blocked sort-based indexing. 72
4.4 Inversion of a block in single-pass in-memory indexing 73
4.5 An example of distributed indexing with MapReduce.

Adapted from Dean and Ghemawat (2004). 76
4.6 Map and reduce functions in MapReduce. 77
4.7 Logarithmic merging. Each token (termID,docID) is initially

added to in-memory index Z0 by LMERGEADDTOKEN.
LOGARITHMICMERGE initializes Z0 and indexes. 79

4.8 A user-document matrix for access control lists. Element (i, j)
is 1 if user i has access to document j and 0 otherwise. During
query processing, a user’s access postings list is intersected
with the results list returned by the text part of the index. 81

5.1 Heaps’ law. 88

5.2 Zipf’s law for Reuters-RCV1. 90
5.3 Storing the dictionary as an array of fixed-width entries. 91
5.4 Dictionary-as-a-string storage. 92
5.5 Blocked storage with four terms per block. 93
5.6 Search of the uncompressed dictionary (a) and a dictionary

compressed by blocking with k = 4 (b). 94
5.7 Front coding. 94
5.8 VB encoding and decoding. 97
5.9 Entropy H(P) as a function of P(x1) for a sample space with

two outcomes x1 and x2. 100
5.10 Stratification of terms for estimating the size of a γ encoded

inverted index. 102

6.1 Parametric search. 111
6.2 Basic zone index 111
6.3 Zone index in which the zone is encoded in the postings

rather than the dictionary. 111

Online edition (c)
2009 Cambridge UP

List of Figures xxi

6.4 Algorithm for computing the weighted zone score from two
postings lists. 113

6.5 An illustration of training examples. 115
6.6 The four possible combinations of sT and sB. 115
6.7 Collection frequency (cf) and document frequency (df) behave

differently, as in this example from the Reuters collection. 118
6.8 Example of idf values. 119
6.9 Table of tf values for Exercise 6.10. 120
6.10 Cosine similarity illustrated. 121
6.11 Euclidean normalized tf values for documents in Figure 6.9. 122
6.12 Term frequencies in three novels. 122
6.13 Term vectors for the three novels of Figure 6.12. 123
6.14 The basic algorithm for computing vector space scores. 125
6.15 SMART notation for tf-idf variants. 128
6.16 Pivoted document length normalization. 130
6.17 Implementing pivoted document length normalization by

linear scaling. 131

7.1 A faster algorithm for vector space scores. 136
7.2 A static quality-ordered index. 139
7.3 Cluster pruning. 142
7.4 Tiered indexes. 144
7.5 A complete search system. 147

8.1 Graph comparing the harmonic mean to other means. 157
8.2 Precision/recall graph. 158
8.3 Averaged 11-point precision/recall graph across 50 queries

for a representative TREC system. 160
8.4 The ROC curve corresponding to the precision-recall curve in

Figure 8.2. 162
8.5 An example of selecting text for a dynamic snippet. 172

9.1 Relevance feedback searching over images. 179
9.2 Example of relevance feedback on a text collection. 180
9.3 The Rocchio optimal query for separating relevant and

nonrelevant documents. 181
9.4 An application of Rocchio’s algorithm. 182
9.5 Results showing pseudo relevance feedback greatly

improving performance. 187
9.6 An example of query expansion in the interface of the Yahoo!

web search engine in 2006. 190
9.7 Examples of query expansion via the PubMed thesaurus. 191
9.8 An example of an automatically generated thesaurus. 192

Online edition (c)
2009 Cambridge UP

xxii List of Figures

10.1 An XML document. 198
10.2 The XML document in Figure 10.1 as a simplified DOM object. 198
10.3 An XML query in NEXI format and its partial representation

as a tree. 199
10.4 Tree representation of XML documents and queries. 200
10.5 Partitioning an XML document into non-overlapping

indexing units. 202
10.6 Schema heterogeneity: intervening nodes and mismatched

names. 204
10.7 A structural mismatch between two queries and a document. 206
10.8 A mapping of an XML document (left) to a set of lexicalized

subtrees (right). 207
10.9 The algorithm for scoring documents with SIMNOMERGE. 209
10.10 Scoring of a query with one structural term in SIMNOMERGE. 209
10.11 Simplified schema of the documents in the INEX collection. 211

11.1 A tree of dependencies between terms. 232

12.1 A simple finite automaton and some of the strings in the
language it generates. 238

12.2 A one-state finite automaton that acts as a unigram language
model. 238

12.3 Partial specification of two unigram language models. 239
12.4 Results of a comparison of tf-idf with language modeling

(LM) term weighting by Ponte and Croft (1998). 247
12.5 Three ways of developing the language modeling approach:

(a) query likelihood, (b) document likelihood, and (c) model
comparison. 250

13.1 Classes, training set, and test set in text classification . 257
13.2 Naive Bayes algorithm (multinomial model): Training and

testing. 260
13.3 NB algorithm (Bernoulli model): Training and testing. 263
13.4 The multinomial NB model. 266
13.5 The Bernoulli NB model. 267
13.6 Basic feature selection algorithm for selecting the k best features. 271
13.7 Features with high mutual information scores for six

Reuters-RCV1 classes. 274
13.8 Effect of feature set size on accuracy for multinomial and

Bernoulli models. 275
13.9 A sample document from the Reuters-21578 collection. 281

14.1 Vector space classification into three classes. 290

Online edition (c)
2009 Cambridge UP

List of Figures xxiii

14.2 Projections of small areas of the unit sphere preserve distances. 291
14.3 Rocchio classification. 293
14.4 Rocchio classification: Training and testing. 295
14.5 The multimodal class “a” consists of two different clusters

(small upper circles centered on X’s). 295
14.6 Voronoi tessellation and decision boundaries (double lines) in

1NN classification. 297
14.7 kNN training (with preprocessing) and testing. 298
14.8 There are an infinite number of hyperplanes that separate two

linearly separable classes. 301
14.9 Linear classification algorithm. 302
14.10 A linear problem with noise. 304
14.11 A nonlinear problem. 305
14.12 J hyperplanes do not divide space into J disjoint regions. 307
14.13 Arithmetic transformations for the bias-variance decomposition. 310
14.14 Example for differences between Euclidean distance, dot

product similarity and cosine similarity. 316
14.15 A simple non-separable set of points. 317

15.1 The support vectors are the 5 points right up against the
margin of the classifier. 320

15.2 An intuition for large-margin classification. 321
15.3 The geometric margin of a point (r) and a decision boundary (ρ). 323
15.4 A tiny 3 data point training set for an SVM. 325
15.5 Large margin classification with slack variables. 327
15.6 Projecting data that is not linearly separable into a higher

dimensional space can make it linearly separable. 331
15.7 A collection of training examples. 343

16.1 An example of a data set with a clear cluster structure. 349
16.2 Clustering of search results to improve recall. 352
16.3 An example of a user session in Scatter-Gather. 353
16.4 Purity as an external evaluation criterion for cluster quality. 357
16.5 The K-means algorithm. 361
16.6 A K-means example for K = 2 in R2. 362
16.7 The outcome of clustering in K-means depends on the initial

seeds. 364
16.8 Estimated minimal residual sum of squares as a function of

the number of clusters in K-means. 366

17.1 A dendrogram of a single-link clustering of 30 documents
from Reuters-RCV1. 379

17.2 A simple, but inefficient HAC algorithm. 381

Online edition (c)
2009 Cambridge UP

xxiv List of Figures

17.3 The different notions of cluster similarity used by the four
HAC algorithms. 381

17.4 A single-link (left) and complete-link (right) clustering of
eight documents. 382

17.5 A dendrogram of a complete-link clustering. 383
17.6 Chaining in single-link clustering. 384
17.7 Outliers in complete-link clustering. 385
17.8 The priority-queue algorithm for HAC. 386
17.9 Single-link clustering algorithm using an NBM array. 387
17.10 Complete-link clustering is not best-merge persistent. 388
17.11 Three iterations of centroid clustering. 391
17.12 Centroid clustering is not monotonic. 392

18.1 Illustration of the singular-value decomposition. 409
18.2 Illustration of low rank approximation using the

singular-value decomposition. 411
18.3 The documents of Example 18.4 reduced to two dimensions

in (V′)T. 416
18.4 Documents for Exercise 18.11. 418
18.5 Glossary for Exercise 18.11. 418

19.1 A dynamically generated web page. 425
19.2 Two nodes of the web graph joined by a link. 425
19.3 A sample small web graph. 426
19.4 The bowtie structure of the Web. 427
19.5 Cloaking as used by spammers. 428
19.6 Search advertising triggered by query keywords. 431
19.7 The various components of a web search engine. 434
19.8 Illustration of shingle sketches. 439
19.9 Two sets Sj1 and Sj2 ; their Jaccard coefficient is 2/5. 440

20.1 The basic crawler architecture. 446
20.2 Distributing the basic crawl architecture. 449
20.3 The URL frontier. 452
20.4 Example of an auxiliary hosts-to-back queues table. 453
20.5 A lexicographically ordered set of URLs. 456
20.6 A four-row segment of the table of links. 457

21.1 The random surfer at node A proceeds with probability 1/3 to
each of B, C and D. 464

21.2 A simple Markov chain with three states; the numbers on the
links indicate the transition probabilities. 466

21.3 The sequence of probability vectors. 469

Online edition (c)
2009 Cambridge UP

List of Figures xxv

21.4 A small web graph. 470
21.5 Topic-specific PageRank. 472
21.6 A sample run of HITS on the query japan elementary schools. 479
21.7 Web graph for Exercise 21.22. 480

Online edition (c)
2009 Cambridge UP

Online edition (c)
2009 Cambridge UP

DRAFT! © April 1, 2009 Cambridge University Press. Feedback welcome. xxvii

Table of Notation

Symbol Page Meaning

γ p. 98 γ code

γ p. 256 Classification or clustering function: γ(d) is d’s class
or cluster

Γ p. 256 Supervised learning method in Chapters 13 and 14:
Γ(D) is the classification function γ learned from
training set D

λ p. 404 Eigenvalue

~µ(.) p. 292 Centroid of a class (in Rocchio classification) or a
cluster (in K-means and centroid clustering)

Φ p. 114 Training example

σ p. 408 Singular value

Θ(·) p. 11 A tight bound on the complexity of an algorithm

ω, ωk p. 357 Cluster in clustering

Ω p. 357 Clustering or set of clusters {ω1, . . . , ωK}

arg maxx f (x) p. 181 The value of x for which f reaches its maximum

arg minx f (x) p. 181 The value of x for which f reaches its minimum

c, cj p. 256 Class or category in classification

cft p. 89 The collection frequency of term t (the total number
of times the term appears in the document collec-
tion)

C p. 256 Set {c1, . . . , cJ} of all classes

C p. 268 A random variable that takes as values members of
C

Online edition (c)
2009 Cambridge UP

xxviii Table of Notation

C p. 403 Term-document matrix

d p. 4 Index of the dth document in the collection D

d p. 71 A document

~d,~q p. 181 Document vector, query vector

D p. 354 Set {d1, . . . , dN} of all documents

Dc p. 292 Set of documents that is in class c

D p. 256 Set {〈d1, c1〉, . . . , 〈dN, cN〉} of all labeled documents
in Chapters 13–15

dft p. 118 The document frequency of term t (the total number
of documents in the collection the term appears in)

H p. 99 Entropy

HM p. 101 Mth harmonic number

I(X; Y) p. 272 Mutual information of random variables X and Y

idft p. 118 Inverse document frequency of term t

J p. 256 Number of classes

k p. 290 Top k items from a set, e.g., k nearest neighbors in
kNN, top k retrieved documents, top k selected fea-
tures from the vocabulary V

k p. 54 Sequence of k characters

K p. 354 Number of clusters

Ld p. 233 Length of document d (in tokens)

La p. 262 Length of the test document (or application docu-
ment) in tokens

Lave p. 70 Average length of a document (in tokens)

M p. 5 Size of the vocabulary (|V|)

Ma p. 262 Size of the vocabulary of the test document (or ap-
plication document)

Mave p. 78 Average size of the vocabulary in a document in the
collection

Md p. 237 Language model for document d

N p. 4 Number of documents in the retrieval or training
collection

Nc p. 259 Number of documents in class c

N(ω) p. 298 Number of times the event ω occurred

Online edition (c)
2009 Cambridge UP

Table of Notation xxix

O(·) p. 11 A bound on the complexity of an algorithm

O(·) p. 221 The odds of an event

P p. 155 Precision

P(·) p. 220 Probability

P p. 465 Transition probability matrix

q p. 59 A query

R p. 155 Recall

si p. 58 A string

si p. 112 Boolean values for zone scoring

sim(d1, d2) p. 121 Similarity score for documents d1, d2

T p. 43 Total number of tokens in the document collection

Tct p. 259 Number of occurrences of word t in documents of
class c

t p. 4 Index of the tth term in the vocabulary V

t p. 61 A term in the vocabulary

tft,d p. 117 The term frequency of term t in document d (the to-
tal number of occurrences of t in d)

Ut p. 266 Random variable taking values 0 (term t is present)
and 1 (t is not present)

V p. 208 Vocabulary of terms {t1, . . . , tM} in a collection (a.k.a.
the lexicon)

~v(d) p. 122 Length-normalized document vector

~V(d) p. 120 Vector of document d, not length-normalized

wft,d p. 125 Weight of term t in document d

w p. 112 A weight, for example for zones or terms

~wT~x = b p. 293 Hyperplane; ~w is the normal vector of the hyper-
plane and wi component i of ~w

~x p. 222 Term incidence vector ~x = (x1, . . . , xM); more gen-
erally: document feature representation

X p. 266 Random variable taking values in V, the vocabulary
(e.g., at a given position k in a document)

X p. 256 Document space in text classification

|A| p. 61 Set cardinality: the number of members of set A

|S| p. 404 Determinant of the square matrix S

Online edition (c)
2009 Cambridge UP

xxx Table of Notation

|si| p. 58 Length in characters of string si

|~x| p. 139 Length of vector ~x

|~x −~y| p. 131 Euclidean distance of ~x and ~y (which is the length of
(~x −~y))

Online edition (c)
2009 Cambridge UP

DRAFT! © April 1, 2009 Cambridge University Press. Feedback welcome. xxxi

Preface

As recently as the 1990s, studies showed that most people preferred getting
information from other people rather than from information retrieval sys-
tems. Of course, in that time period, most people also used human travel
agents to book their travel. However, during the last decade, relentless opti-
mization of information retrieval effectiveness has driven web search engines
to new quality levels where most people are satisfied most of the time, and
web search has become a standard and often preferred source of information
finding. For example, the 2004 Pew Internet Survey (Fallows 2004) found
that “92% of Internet users say the Internet is a good place to go for getting
everyday information.” To the surprise of many, the field of information re-
trieval has moved from being a primarily academic discipline to being the
basis underlying most people’s preferred means of information access. This
book presents the scientific underpinnings of this field, at a level accessible
to graduate students as well as advanced undergraduates.

Information retrieval did not begin with the Web. In response to various
challenges of providing information access, the field of information retrieval
evolved to give principled approaches to searching various forms of con-
tent. The field began with scientific publications and library records, but
soon spread to other forms of content, particularly those of information pro-
fessionals, such as journalists, lawyers, and doctors. Much of the scientific
research on information retrieval has occurred in these contexts, and much of
the continued practice of information retrieval deals with providing access to
unstructured information in various corporate and governmental domains,
and this work forms much of the foundation of our book.

Nevertheless, in recent years, a principal driver of innovation has been the
World Wide Web, unleashing publication at the scale of tens of millions of
content creators. This explosion of published information would be moot
if the information could not be found, annotated and analyzed so that each
user can quickly find information that is both relevant and comprehensive
for their needs. By the late 1990s, many people felt that continuing to index

Online edition (c)
2009 Cambridge UP

xxxii Preface

the whole Web would rapidly become impossible, due to the Web’s expo-
nential growth in size. But major scientific innovations, superb engineering,
the rapidly declining price of computer hardware, and the rise of a commer-
cial underpinning for web search have all conspired to power today’s major
search engines, which are able to provide high-quality results within subsec-
ond response times for hundreds of millions of searches a day over billions
of web pages.

Book organization and course development

This book is the result of a series of courses we have taught at Stanford Uni-
versity and at the University of Stuttgart, in a range of durations including
a single quarter, one semester and two quarters. These courses were aimed
at early-stage graduate students in computer science, but we have also had
enrollment from upper-class computer science undergraduates, as well as
students from law, medical informatics, statistics, linguistics and various en-
gineering disciplines. The key design principle for this book, therefore, was
to cover what we believe to be important in a one-term graduate course on
information retrieval. An additional principle is to build each chapter around
material that we believe can be covered in a single lecture of 75 to 90 minutes.

The first eight chapters of the book are devoted to the basics of informa-
tion retrieval, and in particular the heart of search engines; we consider this
material to be core to any course on information retrieval. Chapter 1 in-
troduces inverted indexes, and shows how simple Boolean queries can be
processed using such indexes. Chapter 2 builds on this introduction by de-
tailing the manner in which documents are preprocessed before indexing
and by discussing how inverted indexes are augmented in various ways for
functionality and speed. Chapter 3 discusses search structures for dictionar-
ies and how to process queries that have spelling errors and other imprecise
matches to the vocabulary in the document collection being searched. Chap-
ter 4 describes a number of algorithms for constructing the inverted index
from a text collection with particular attention to highly scalable and dis-
tributed algorithms that can be applied to very large collections. Chapter 5
covers techniques for compressing dictionaries and inverted indexes. These
techniques are critical for achieving subsecond response times to user queries
in large search engines. The indexes and queries considered in Chapters 1–5
only deal with Boolean retrieval, in which a document either matches a query,
or does not. A desire to measure the extent to which a document matches a
query, or the score of a document for a query, motivates the development of
term weighting and the computation of scores in Chapters 6 and 7, leading
to the idea of a list of documents that are rank-ordered for a query. Chapter 8
focuses on the evaluation of an information retrieval system based on the

Online edition (c)
2009 Cambridge UP

Preface xxxiii

relevance of the documents it retrieves, allowing us to compare the relative
performances of different systems on benchmark document collections and
queries.

Chapters 9–21 build on the foundation of the first eight chapters to cover
a variety of more advanced topics. Chapter 9 discusses methods by which
retrieval can be enhanced through the use of techniques like relevance feed-
back and query expansion, which aim at increasing the likelihood of retriev-
ing relevant documents. Chapter 10 considers information retrieval from
documents that are structured with markup languages like XML and HTML.
We treat structured retrieval by reducing it to the vector space scoring meth-
ods developed in Chapter 6. Chapters 11 and 12 invoke probability theory to
compute scores for documents on queries. Chapter 11 develops traditional
probabilistic information retrieval, which provides a framework for comput-
ing the probability of relevance of a document, given a set of query terms.
This probability may then be used as a score in ranking. Chapter 12 illus-
trates an alternative, wherein for each document in a collection, we build a
language model from which one can estimate a probability that the language
model generates a given query. This probability is another quantity with
which we can rank-order documents.

Chapters 13–17 give a treatment of various forms of machine learning and
numerical methods in information retrieval. Chapters 13–15 treat the prob-
lem of classifying documents into a set of known categories, given a set of
documents along with the classes they belong to. Chapter 13 motivates sta-
tistical classification as one of the key technologies needed for a successful
search engine, introduces Naive Bayes, a conceptually simple and efficient
text classification method, and outlines the standard methodology for evalu-
ating text classifiers. Chapter 14 employs the vector space model from Chap-
ter 6 and introduces two classification methods, Rocchio and kNN, that op-
erate on document vectors. It also presents the bias-variance tradeoff as an
important characterization of learning problems that provides criteria for se-
lecting an appropriate method for a text classification problem. Chapter 15
introduces support vector machines, which many researchers currently view
as the most effective text classification method. We also develop connections
in this chapter between the problem of classification and seemingly disparate
topics such as the induction of scoring functions from a set of training exam-
ples.

Chapters 16–18 consider the problem of inducing clusters of related doc-
uments from a collection. In Chapter 16, we first give an overview of a
number of important applications of clustering in information retrieval. We
then describe two flat clustering algorithms: the K-means algorithm, an ef-
ficient and widely used document clustering method; and the Expectation-
Maximization algorithm, which is computationally more expensive, but also
more flexible. Chapter 17 motivates the need for hierarchically structured

Online edition (c)
2009 Cambridge UP

xxxiv Preface

clusterings (instead of flat clusterings) in many applications in information
retrieval and introduces a number of clustering algorithms that produce a
hierarchy of clusters. The chapter also addresses the difficult problem of
automatically computing labels for clusters. Chapter 18 develops methods
from linear algebra that constitute an extension of clustering, and also offer
intriguing prospects for algebraic methods in information retrieval, which
have been pursued in the approach of latent semantic indexing.

Chapters 19–21 treat the problem of web search. We give in Chapter 19 a
summary of the basic challenges in web search, together with a set of tech-
niques that are pervasive in web information retrieval. Next, Chapter 20
describes the architecture and requirements of a basic web crawler. Finally,
Chapter 21 considers the power of link analysis in web search, using in the
process several methods from linear algebra and advanced probability the-
ory.

This book is not comprehensive in covering all topics related to informa-
tion retrieval. We have put aside a number of topics, which we deemed
outside the scope of what we wished to cover in an introduction to infor-
mation retrieval class. Nevertheless, for people interested in these topics, we
provide a few pointers to mainly textbook coverage here.

Cross-language IR (Grossman and Frieder 2004, ch. 4) and (Oard and Dorr
1996).

Image and Multimedia IR (Grossman and Frieder 2004, ch. 4), (Baeza-Yates
and Ribeiro-Neto 1999, ch. 6), (Baeza-Yates and Ribeiro-Neto 1999, ch. 11),
(Baeza-Yates and Ribeiro-Neto 1999, ch. 12), (del Bimbo 1999), (Lew 2001),
and (Smeulders et al. 2000).

Speech retrieval (Coden et al. 2002).

Music Retrieval (Downie 2006) and http://www.ismir.net/.

User interfaces for IR (Baeza-Yates and Ribeiro-Neto 1999, ch. 10).

Parallel and Peer-to-Peer IR (Grossman and Frieder 2004, ch. 7), (Baeza-Yates
and Ribeiro-Neto 1999, ch. 9), and (Aberer 2001).

Digital libraries (Baeza-Yates and Ribeiro-Neto 1999, ch. 15) and (Lesk 2004).

Information science perspective (Korfhage 1997), (Meadow et al. 1999), and
(Ingwersen and Järvelin 2005).

Logic-based approaches to IR (van Rijsbergen 1989).

Natural Language Processing techniques (Manning and Schütze 1999), (Ju-
rafsky and Martin 2008), and (Lewis and Jones 1996).

Online edition (c)
2009 Cambridge UP

Preface xxxv

Prerequisites

Introductory courses in data structures and algorithms, in linear algebra and
in probability theory suffice as prerequisites for all 21 chapters. We now give
more detail for the benefit of readers and instructors who wish to tailor their
reading to some of the chapters.

Chapters 1–5 assume as prerequisite a basic course in algorithms and data
structures. Chapters 6 and 7 require, in addition, a knowledge of basic lin-
ear algebra including vectors and dot products. No additional prerequisites
are assumed until Chapter 11, where a basic course in probability theory is
required; Section 11.1 gives a quick review of the concepts necessary in Chap-
ters 11–13. Chapter 15 assumes that the reader is familiar with the notion of
nonlinear optimization, although the chapter may be read without detailed
knowledge of algorithms for nonlinear optimization. Chapter 18 demands a
first course in linear algebra including familiarity with the notions of matrix
rank and eigenvectors; a brief review is given in Section 18.1. The knowledge
of eigenvalues and eigenvectors is also necessary in Chapter 21.

Book layout

✎ Worked examples in the text appear with a pencil sign next to them in the left
margin. Advanced or difficult material appears in sections or subsections
indicated with scissors in the margin. Exercises are marked in the margin✄ with a question mark. The level of difficulty of exercises is indicated as easy
(⋆), medium (⋆⋆), or difficult (⋆ ⋆ ⋆).?
Acknowledgments

We would like to thank Cambridge University Press for allowing us to make
the draft book available online, which facilitated much of the feedback we
have received while writing the book. We also thank Lauren Cowles, who
has been an outstanding editor, providing several rounds of comments on
each chapter, on matters of style, organization, and coverage, as well as de-
tailed comments on the subject matter of the book. To the extent that we
have achieved our goals in writing this book, she deserves an important part
of the credit.

We are very grateful to the many people who have given us comments,
suggestions, and corrections based on draft versions of this book. We thank
for providing various corrections and comments: Cheryl Aasheim, Josh At-
tenberg, Daniel Beck, Luc Bélanger, Georg Buscher, Tom Breuel, Daniel Bur-
ckhardt, Fazli Can, Dinquan Chen, Stephen Clark, Ernest Davis, Pedro Domin-
gos, Rodrigo Panchiniak Fernandes, Paolo Ferragina, Alex Fraser, Norbert

Online edition (c)
2009 Cambridge UP

xxxvi Preface

Fuhr, Vignesh Ganapathy, Elmer Garduno, Xiubo Geng, David Gondek, Ser-
gio Govoni, Corinna Habets, Ben Handy, Donna Harman, Benjamin Haskell,
Thomas Hühn, Deepak Jain, Ralf Jankowitsch, Dinakar Jayarajan, Vinay Kakade,
Mei Kobayashi, Wessel Kraaij, Rick Lafleur, Florian Laws, Hang Li, David
Losada, David Mann, Ennio Masi, Sven Meyer zu Eissen, Alexander Murzaku,
Gonzalo Navarro, Frank McCown, Paul McNamee, Christoph Müller, Scott
Olsson, Tao Qin, Megha Raghavan, Michal Rosen-Zvi, Klaus Rothenhäusler,
Kenyu L. Runner, Alexander Salamanca, Grigory Sapunov, Evgeny Shad-
chnev, Tobias Scheffer, Nico Schlaefer, Ian Soboroff, Benno Stein, Marcin
Sydow, Andrew Turner, Jason Utt, Huey Vo, Travis Wade, Mike Walsh, Changliang
Wang, Renjing Wang, and Thomas Zeume.

Many people gave us detailed feedback on individual chapters, either at
our request or through their own initiative. For this, we’re particularly grate-
ful to: James Allan, Omar Alonso, Ismail Sengor Altingovde, Vo Ngoc Anh,
Roi Blanco, Eric Breck, Eric Brown, Mark Carman, Carlos Castillo, Junghoo
Cho, Aron Culotta, Doug Cutting, Meghana Deodhar, Susan Dumais, Jo-
hannes Fürnkranz, Andreas Heß, Djoerd Hiemstra, David Hull, Thorsten
Joachims, Siddharth Jonathan J. B., Jaap Kamps, Mounia Lalmas, Amy Langville,
Nicholas Lester, Dave Lewis, Daniel Lowd, Yosi Mass, Jeff Michels, Alessan-
dro Moschitti, Amir Najmi, Marc Najork, Giorgio Maria Di Nunzio, Paul
Ogilvie, Priyank Patel, Jan Pedersen, Kathryn Pedings, Vassilis Plachouras,
Daniel Ramage, Ghulam Raza, Stefan Riezler, Michael Schiehlen, Helmut
Schmid, Falk Nicolas Scholer, Sabine Schulte im Walde, Fabrizio Sebastiani,
Sarabjeet Singh, Valentin Spitkovsky, Alexander Strehl, John Tait, Shivaku-
mar Vaithyanathan, Ellen Voorhees, Gerhard Weikum, Dawid Weiss, Yiming
Yang, Yisong Yue, Jian Zhang, and Justin Zobel.

And finally there were a few reviewers who absolutely stood out in terms
of the quality and quantity of comments that they provided. We thank them
for their significant impact on the content and structure of the book. We
express our gratitude to Pavel Berkhin, Stefan Büttcher, Jamie Callan, Byron
Dom, Torsten Suel, and Andrew Trotman.

Parts of the initial drafts of Chapters 13–15 were based on slides that were
generously provided by Ray Mooney. While the material has gone through
extensive revisions, we gratefully acknowledge Ray’s contribution to the
three chapters in general and to the description of the time complexities of
text classification algorithms in particular.

The above is unfortunately an incomplete list: we are still in the process of
incorporating feedback we have received. And, like all opinionated authors,
we did not always heed the advice that was so freely given. The published
versions of the chapters remain solely the responsibility of the authors.

The authors thank Stanford University and the University of Stuttgart for
providing a stimulating academic environment for discussing ideas and the
opportunity to teach courses from which this book arose and in which its

Online edition (c)
2009 Cambridge UP

Preface xxxvii

contents were refined. CM thanks his family for the many hours they’ve let
him spend working on this book, and hopes he’ll have a bit more free time on
weekends next year. PR thanks his family for their patient support through
the writing of this book and is also grateful to Yahoo! Inc. for providing a
fertile environment in which to work on this book. HS would like to thank
his parents, family, and friends for their support while writing this book.

Web and contact information

This book has a companion website at http://informationretrieval.org. As well as
links to some more general resources, it is our intent to maintain on this web-
site a set of slides for each chapter which may be used for the corresponding
lecture. We gladly welcome further feedback, corrections, and suggestions
on the book, which may be sent to all the authors at informationretrieval (at) yahoogroups (dot) com.

	List of Tables
	List of Figures
	Table of Notation
	Preface

