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Preface

As recently as the 1990s, studies showed that most people preferred getting
information from other people rather than from information retrieval sys-
tems. Of course, in that time period, most people also used human travel
agents to book their travel. However, during the last decade, relentless opti-
mization of information retrieval effectiveness has driven web search engines
to new quality levels where most people are satisfied most of the time, and
web search has become a standard and often preferred source of information
finding. For example, the 2004 Pew Internet Survey (Fallows 2004) found
that “92% of Internet users say the Internet is a good place to go for getting
everyday information.” To the surprise of many, the field of information re-
trieval has moved from being a primarily academic discipline to being the
basis underlying most people’s preferred means of information access. This
book presents the scientific underpinnings of this field, at a level accessible
to graduate students as well as advanced undergraduates.

Information retrieval did not begin with the Web. In response to various
challenges of providing information access, the field of information retrieval
evolved to give principled approaches to searching various forms of con-
tent. The field began with scientific publications and library records, but
soon spread to other forms of content, particularly those of information pro-
fessionals, such as journalists, lawyers, and doctors. Much of the scientific
research on information retrieval has occurred in these contexts, and much of
the continued practice of information retrieval deals with providing access to
unstructured information in various corporate and governmental domains,
and this work forms much of the foundation of our book.

Nevertheless, in recent years, a principal driver of innovation has been the
World Wide Web, unleashing publication at the scale of tens of millions of
content creators. This explosion of published information would be moot
if the information could not be found, annotated and analyzed so that each
user can quickly find information that is both relevant and comprehensive
for their needs. By the late 1990s, many people felt that continuing to index



Online edition (c)
2009 Cambridge UP

xxxii Preface

the whole Web would rapidly become impossible, due to the Web’s expo-
nential growth in size. But major scientific innovations, superb engineering,
the rapidly declining price of computer hardware, and the rise of a commer-
cial underpinning for web search have all conspired to power today’s major
search engines, which are able to provide high-quality results within subsec-
ond response times for hundreds of millions of searches a day over billions
of web pages.

Book organization and course development

This book is the result of a series of courses we have taught at Stanford Uni-
versity and at the University of Stuttgart, in a range of durations including
a single quarter, one semester and two quarters. These courses were aimed
at early-stage graduate students in computer science, but we have also had
enrollment from upper-class computer science undergraduates, as well as
students from law, medical informatics, statistics, linguistics and various en-
gineering disciplines. The key design principle for this book, therefore, was
to cover what we believe to be important in a one-term graduate course on
information retrieval. An additional principle is to build each chapter around
material that we believe can be covered in a single lecture of 75 to 90 minutes.

The first eight chapters of the book are devoted to the basics of informa-
tion retrieval, and in particular the heart of search engines; we consider this
material to be core to any course on information retrieval. Chapter 1 in-
troduces inverted indexes, and shows how simple Boolean queries can be
processed using such indexes. Chapter 2 builds on this introduction by de-
tailing the manner in which documents are preprocessed before indexing
and by discussing how inverted indexes are augmented in various ways for
functionality and speed. Chapter 3 discusses search structures for dictionar-
ies and how to process queries that have spelling errors and other imprecise
matches to the vocabulary in the document collection being searched. Chap-
ter 4 describes a number of algorithms for constructing the inverted index
from a text collection with particular attention to highly scalable and dis-
tributed algorithms that can be applied to very large collections. Chapter 5
covers techniques for compressing dictionaries and inverted indexes. These
techniques are critical for achieving subsecond response times to user queries
in large search engines. The indexes and queries considered in Chapters 1–5
only deal with Boolean retrieval, in which a document either matches a query,
or does not. A desire to measure the extent to which a document matches a
query, or the score of a document for a query, motivates the development of
term weighting and the computation of scores in Chapters 6 and 7, leading
to the idea of a list of documents that are rank-ordered for a query. Chapter 8
focuses on the evaluation of an information retrieval system based on the
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relevance of the documents it retrieves, allowing us to compare the relative
performances of different systems on benchmark document collections and
queries.

Chapters 9–21 build on the foundation of the first eight chapters to cover
a variety of more advanced topics. Chapter 9 discusses methods by which
retrieval can be enhanced through the use of techniques like relevance feed-
back and query expansion, which aim at increasing the likelihood of retriev-
ing relevant documents. Chapter 10 considers information retrieval from
documents that are structured with markup languages like XML and HTML.
We treat structured retrieval by reducing it to the vector space scoring meth-
ods developed in Chapter 6. Chapters 11 and 12 invoke probability theory to
compute scores for documents on queries. Chapter 11 develops traditional
probabilistic information retrieval, which provides a framework for comput-
ing the probability of relevance of a document, given a set of query terms.
This probability may then be used as a score in ranking. Chapter 12 illus-
trates an alternative, wherein for each document in a collection, we build a
language model from which one can estimate a probability that the language
model generates a given query. This probability is another quantity with
which we can rank-order documents.

Chapters 13–17 give a treatment of various forms of machine learning and
numerical methods in information retrieval. Chapters 13–15 treat the prob-
lem of classifying documents into a set of known categories, given a set of
documents along with the classes they belong to. Chapter 13 motivates sta-
tistical classification as one of the key technologies needed for a successful
search engine, introduces Naive Bayes, a conceptually simple and efficient
text classification method, and outlines the standard methodology for evalu-
ating text classifiers. Chapter 14 employs the vector space model from Chap-
ter 6 and introduces two classification methods, Rocchio and kNN, that op-
erate on document vectors. It also presents the bias-variance tradeoff as an
important characterization of learning problems that provides criteria for se-
lecting an appropriate method for a text classification problem. Chapter 15
introduces support vector machines, which many researchers currently view
as the most effective text classification method. We also develop connections
in this chapter between the problem of classification and seemingly disparate
topics such as the induction of scoring functions from a set of training exam-
ples.

Chapters 16–18 consider the problem of inducing clusters of related doc-
uments from a collection. In Chapter 16, we first give an overview of a
number of important applications of clustering in information retrieval. We
then describe two flat clustering algorithms: the K-means algorithm, an ef-
ficient and widely used document clustering method; and the Expectation-
Maximization algorithm, which is computationally more expensive, but also
more flexible. Chapter 17 motivates the need for hierarchically structured
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clusterings (instead of flat clusterings) in many applications in information
retrieval and introduces a number of clustering algorithms that produce a
hierarchy of clusters. The chapter also addresses the difficult problem of
automatically computing labels for clusters. Chapter 18 develops methods
from linear algebra that constitute an extension of clustering, and also offer
intriguing prospects for algebraic methods in information retrieval, which
have been pursued in the approach of latent semantic indexing.

Chapters 19–21 treat the problem of web search. We give in Chapter 19 a
summary of the basic challenges in web search, together with a set of tech-
niques that are pervasive in web information retrieval. Next, Chapter 20
describes the architecture and requirements of a basic web crawler. Finally,
Chapter 21 considers the power of link analysis in web search, using in the
process several methods from linear algebra and advanced probability the-
ory.

This book is not comprehensive in covering all topics related to informa-
tion retrieval. We have put aside a number of topics, which we deemed
outside the scope of what we wished to cover in an introduction to infor-
mation retrieval class. Nevertheless, for people interested in these topics, we
provide a few pointers to mainly textbook coverage here.

Cross-language IR (Grossman and Frieder 2004, ch. 4) and (Oard and Dorr
1996).

Image and Multimedia IR (Grossman and Frieder 2004, ch. 4), (Baeza-Yates
and Ribeiro-Neto 1999, ch. 6), (Baeza-Yates and Ribeiro-Neto 1999, ch. 11),
(Baeza-Yates and Ribeiro-Neto 1999, ch. 12), (del Bimbo 1999), (Lew 2001),
and (Smeulders et al. 2000).

Speech retrieval (Coden et al. 2002).

Music Retrieval (Downie 2006) and http://www.ismir.net/.

User interfaces for IR (Baeza-Yates and Ribeiro-Neto 1999, ch. 10).

Parallel and Peer-to-Peer IR (Grossman and Frieder 2004, ch. 7), (Baeza-Yates
and Ribeiro-Neto 1999, ch. 9), and (Aberer 2001).

Digital libraries (Baeza-Yates and Ribeiro-Neto 1999, ch. 15) and (Lesk 2004).

Information science perspective (Korfhage 1997), (Meadow et al. 1999), and
(Ingwersen and Järvelin 2005).

Logic-based approaches to IR (van Rijsbergen 1989).

Natural Language Processing techniques (Manning and Schütze 1999), (Ju-
rafsky and Martin 2008), and (Lewis and Jones 1996).
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Prerequisites

Introductory courses in data structures and algorithms, in linear algebra and
in probability theory suffice as prerequisites for all 21 chapters. We now give
more detail for the benefit of readers and instructors who wish to tailor their
reading to some of the chapters.

Chapters 1–5 assume as prerequisite a basic course in algorithms and data
structures. Chapters 6 and 7 require, in addition, a knowledge of basic lin-
ear algebra including vectors and dot products. No additional prerequisites
are assumed until Chapter 11, where a basic course in probability theory is
required; Section 11.1 gives a quick review of the concepts necessary in Chap-
ters 11–13. Chapter 15 assumes that the reader is familiar with the notion of
nonlinear optimization, although the chapter may be read without detailed
knowledge of algorithms for nonlinear optimization. Chapter 18 demands a
first course in linear algebra including familiarity with the notions of matrix
rank and eigenvectors; a brief review is given in Section 18.1. The knowledge
of eigenvalues and eigenvectors is also necessary in Chapter 21.

Book layout

✎ Worked examples in the text appear with a pencil sign next to them in the left
margin. Advanced or difficult material appears in sections or subsections
indicated with scissors in the margin. Exercises are marked in the margin✄ with a question mark. The level of difficulty of exercises is indicated as easy
(⋆), medium (⋆⋆), or difficult (⋆ ⋆ ⋆).?
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