
Online edition (c)
2009 Cambridge UP

DRAFT! © April 1, 2009 Cambridge University Press. Feedback welcome. 85

5 Index compression

Chapter 1 introduced the dictionary and the inverted index as the central
data structures in information retrieval (IR). In this chapter, we employ a
number of compression techniques for dictionary and inverted index that
are essential for efficient IR systems.

One benefit of compression is immediately clear. We need less disk space.
As we will see, compression ratios of 1:4 are easy to achieve, potentially cut-
ting the cost of storing the index by 75%.

There are two more subtle benefits of compression. The first is increased
use of caching. Search systems use some parts of the dictionary and the index
much more than others. For example, if we cache the postings list of a fre-
quently used query term t, then the computations necessary for responding
to the one-term query t can be entirely done in memory. With compression,
we can fit a lot more information into main memory. Instead of having to
expend a disk seek when processing a query with t, we instead access its
postings list in memory and decompress it. As we will see below, there are
simple and efficient decompression methods, so that the penalty of having to
decompress the postings list is small. As a result, we are able to decrease the
response time of the IR system substantially. Because memory is a more ex-
pensive resource than disk space, increased speed owing to caching – rather
than decreased space requirements – is often the prime motivator for com-
pression.

The second more subtle advantage of compression is faster transfer of data
from disk to memory. Efficient decompression algorithms run so fast on
modern hardware that the total time of transferring a compressed chunk of
data from disk and then decompressing it is usually less than transferring
the same chunk of data in uncompressed form. For instance, we can reduce
input/output (I/O) time by loading a much smaller compressed postings
list, even when you add on the cost of decompression. So, in most cases,
the retrieval system runs faster on compressed postings lists than on uncom-
pressed postings lists.

If the main goal of compression is to conserve disk space, then the speed

Online edition (c)
2009 Cambridge UP

86 5 Index compression

of compression algorithms is of no concern. But for improved cache uti-
lization and faster disk-to-memory transfer, decompression speeds must be
high. The compression algorithms we discuss in this chapter are highly effi-
cient and can therefore serve all three purposes of index compression.

In this chapter, we define a posting as a docID in a postings list. For exam-POSTING

ple, the postings list (6; 20, 45, 100), where 6 is the termID of the list’s term,
contains three postings. As discussed in Section 2.4.2 (page 41), postings in
most search systems also contain frequency and position information; but we
will only consider simple docID postings here. See Section 5.4 for references
on compressing frequencies and positions.

This chapter first gives a statistical characterization of the distribution of
the entities we want to compress – terms and postings in large collections
(Section 5.1). We then look at compression of the dictionary, using the dictionary-
as-a-string method and blocked storage (Section 5.2). Section 5.3 describes
two techniques for compressing the postings file, variable byte encoding and
γ encoding.

5.1 Statistical properties of terms in information retrieval

As in the last chapter, we use Reuters-RCV1 as our model collection (see Ta-
ble 4.2, page 70). We give some term and postings statistics for the collection
in Table 5.1. “∆%” indicates the reduction in size from the previous line.
“T%” is the cumulative reduction from unfiltered.

The table shows the number of terms for different levels of preprocessing
(column 2). The number of terms is the main factor in determining the size
of the dictionary. The number of nonpositional postings (column 3) is an
indicator of the expected size of the nonpositional index of the collection.
The expected size of a positional index is related to the number of positions
it must encode (column 4).

In general, the statistics in Table 5.1 show that preprocessing affects the size
of the dictionary and the number of nonpositional postings greatly. Stem-
ming and case folding reduce the number of (distinct) terms by 17% each
and the number of nonpositional postings by 4% and 3%, respectively. The
treatment of the most frequent words is also important. The rule of 30 statesRULE OF 30

that the 30 most common words account for 30% of the tokens in written text
(31% in the table). Eliminating the 150 most common words from indexing
(as stop words; cf. Section 2.2.2, page 27) cuts 25% to 30% of the nonpositional
postings. But, although a stop list of 150 words reduces the number of post-
ings by a quarter or more, this size reduction does not carry over to the size
of the compressed index. As we will see later in this chapter, the postings
lists of frequent words require only a few bits per posting after compression.

The deltas in the table are in a range typical of large collections. Note,

Online edition (c)
2009 Cambridge UP

5.1 Statistical properties of terms in information retrieval 87

◮ Table 5.1 The effect of preprocessing on the number of terms, nonpositional post-
ings, and tokens for Reuters-RCV1. “∆%” indicates the reduction in size from the pre-
vious line, except that “30 stop words” and “150 stop words” both use “case folding”
as their reference line. “T%” is the cumulative (“total”) reduction from unfiltered. We
performed stemming with the Porter stemmer (Chapter 2, page 33).

tokens (= number of position
(distinct) terms nonpositional postings entries in postings)

number ∆% T% number ∆% T% number ∆% T%
unfiltered 484,494 109,971,179 197,879,290
no numbers 473,723 −2 −2 100,680,242 −8 −8 179,158,204 −9 −9
case folding 391,523 −17 −19 96,969,056 −3 −12 179,158,204 −0 −9
30 stop words 391,493 −0 −19 83,390,443 −14 −24 121,857,825 −31 −38
150 stop words 391,373 −0 −19 67,001,847 −30 −39 94,516,599 −47 −52
stemming 322,383 −17 −33 63,812,300 −4 −42 94,516,599 −0 −52

however, that the percentage reductions can be very different for some text
collections. For example, for a collection of web pages with a high proportion
of French text, a lemmatizer for French reduces vocabulary size much more
than the Porter stemmer does for an English-only collection because French
is a morphologically richer language than English.

The compression techniques we describe in the remainder of this chapter
are lossless, that is, all information is preserved. Better compression ratiosLOSSLESS

can be achieved with lossy compression, which discards some information.LOSSY COMPRESSION

Case folding, stemming, and stop word elimination are forms of lossy com-
pression. Similarly, the vector space model (Chapter 6) and dimensionality
reduction techniques like latent semantic indexing (Chapter 18) create com-
pact representations from which we cannot fully restore the original collec-
tion. Lossy compression makes sense when the “lost” information is unlikely
ever to be used by the search system. For example, web search is character-
ized by a large number of documents, short queries, and users who only look
at the first few pages of results. As a consequence, we can discard postings of
documents that would only be used for hits far down the list. Thus, there are
retrieval scenarios where lossy methods can be used for compression without
any reduction in effectiveness.

Before introducing techniques for compressing the dictionary, we want to
estimate the number of distinct terms M in a collection. It is sometimes said
that languages have a vocabulary of a certain size. The second edition of
the Oxford English Dictionary (OED) defines more than 600,000 words. But
the vocabulary of most large collections is much larger than the OED. The
OED does not include most names of people, locations, products, or scientific

Online edition (c)
2009 Cambridge UP

88 5 Index compression

0 2 4 6 8

0
1

2
3

4
5

6

log10 T

lo
g
1
0
 M

◮ Figure 5.1 Heaps’ law. Vocabulary size M as a function of collection size T
(number of tokens) for Reuters-RCV1. For these data, the dashed line log10 M =

0.49 ∗ log10 T + 1.64 is the best least-squares fit. Thus, k = 101.64 ≈ 44 and b = 0.49.

entities like genes. These names need to be included in the inverted index,
so our users can search for them.

5.1.1 Heaps’ law: Estimating the number of terms

A better way of getting a handle on M is Heaps’ law, which estimates vocab-HEAPS’ LAW

ulary size as a function of collection size:

M = kTb(5.1)

where T is the number of tokens in the collection. Typical values for the
parameters k and b are: 30 ≤ k ≤ 100 and b ≈ 0.5. The motivation for
Heaps’ law is that the simplest possible relationship between collection size
and vocabulary size is linear in log–log space and the assumption of linearity
is usually born out in practice as shown in Figure 5.1 for Reuters-RCV1. In
this case, the fit is excellent for T > 105 = 100,000, for the parameter values
b = 0.49 and k = 44. For example, for the first 1,000,020 tokens Heaps’ law

Online edition (c)
2009 Cambridge UP

5.1 Statistical properties of terms in information retrieval 89

predicts 38,323 terms:

44× 1,000,0200.49 ≈ 38,323.

The actual number is 38,365 terms, very close to the prediction.
The parameter k is quite variable because vocabulary growth depends a

lot on the nature of the collection and how it is processed. Case-folding and
stemming reduce the growth rate of the vocabulary, whereas including num-
bers and spelling errors increase it. Regardless of the values of the param-
eters for a particular collection, Heaps’ law suggests that (i) the dictionary
size continues to increase with more documents in the collection, rather than
a maximum vocabulary size being reached, and (ii) the size of the dictionary
is quite large for large collections. These two hypotheses have been empir-
ically shown to be true of large text collections (Section 5.4). So dictionary
compression is important for an effective information retrieval system.

5.1.2 Zipf’s law: Modeling the distribution of terms

We also want to understand how terms are distributed across documents.
This helps us to characterize the properties of the algorithms for compressing
postings lists in Section 5.3.

A commonly used model of the distribution of terms in a collection is Zipf’sZIPF’S LAW

law. It states that, if t1 is the most common term in the collection, t2 is the
next most common, and so on, then the collection frequency cfi of the ith
most common term is proportional to 1/i:

cfi ∝
1

i
.(5.2)

So if the most frequent term occurs cf1 times, then the second most frequent
term has half as many occurrences, the third most frequent term a third as
many occurrences, and so on. The intuition is that frequency decreases very
rapidly with rank. Equation (5.2) is one of the simplest ways of formalizing
such a rapid decrease and it has been found to be a reasonably good model.

Equivalently, we can write Zipf’s law as cfi = cik or as log cfi = log c +
k log i where k = −1 and c is a constant to be defined in Section 5.3.2. It
is therefore a power law with exponent k = −1. See Chapter 19, page 426,POWER LAW

for another power law, a law characterizing the distribution of links on web
pages.

The log–log graph in Figure 5.2 plots the collection frequency of a term as
a function of its rank for Reuters-RCV1. A line with slope –1, corresponding
to the Zipf function log cfi = log c − log i, is also shown. The fit of the data
to the law is not particularly good, but good enough to serve as a model for
term distributions in our calculations in Section 5.3.

Online edition (c)
2009 Cambridge UP

90 5 Index compression

0 1 2 3 4 5 6

0
1

2
3

4
5

6
7

log10 rank

7

lo
g

1
0

 c
f

◮ Figure 5.2 Zipf’s law for Reuters-RCV1. Frequency is plotted as a function of
frequency rank for the terms in the collection. The line is the distribution predicted
by Zipf’s law (weighted least-squares fit; intercept is 6.95).

? Exercise 5.1 [⋆]

Assuming one machine word per posting, what is the size of the uncompressed (non-
positional) index for different tokenizations based on Table 5.1? How do these num-
bers compare with Table 5.6?

5.2 Dictionary compression

This section presents a series of dictionary data structures that achieve in-
creasingly higher compression ratios. The dictionary is small compared with
the postings file as suggested by Table 5.1. So why compress it if it is respon-
sible for only a small percentage of the overall space requirements of the IR
system?

One of the primary factors in determining the response time of an IR sys-
tem is the number of disk seeks necessary to process a query. If parts of the
dictionary are on disk, then many more disk seeks are necessary in query
evaluation. Thus, the main goal of compressing the dictionary is to fit it in
main memory, or at least a large portion of it, to support high query through-

Online edition (c)
2009 Cambridge UP

5.2 Dictionary compression 91

term document
frequency

pointer to
postings list

a 656,265 −→
aachen 65 −→
.
zulu 221 −→

space needed: 20 bytes 4 bytes 4 bytes

◮ Figure 5.3 Storing the dictionary as an array of fixed-width entries.

put. Although dictionaries of very large collections fit into the memory of a
standard desktop machine, this is not true of many other application scenar-
ios. For example, an enterprise search server for a large corporation may
have to index a multiterabyte collection with a comparatively large vocab-
ulary because of the presence of documents in many different languages.
We also want to be able to design search systems for limited hardware such
as mobile phones and onboard computers. Other reasons for wanting to
conserve memory are fast startup time and having to share resources with
other applications. The search system on your PC must get along with the
memory-hogging word processing suite you are using at the same time.

5.2.1 Dictionary as a string

The simplest data structure for the dictionary is to sort the vocabulary lex-
icographically and store it in an array of fixed-width entries as shown in
Figure 5.3. We allocate 20 bytes for the term itself (because few terms have
more than twenty characters in English), 4 bytes for its document frequency,
and 4 bytes for the pointer to its postings list. Four-byte pointers resolve a
4 gigabytes (GB) address space. For large collections like the web, we need
to allocate more bytes per pointer. We look up terms in the array by binary
search. For Reuters-RCV1, we need M × (20 + 4 + 4) = 400,000× 28 =
11.2megabytes (MB) for storing the dictionary in this scheme.

Using fixed-width entries for terms is clearly wasteful. The average length
of a term in English is about eight characters (Table 4.2, page 70), so on av-
erage we are wasting twelve characters in the fixed-width scheme. Also,
we have no way of storing terms with more than twenty characters like
hydrochlorofluorocarbons and supercalifragilisticexpialidocious. We can overcome
these shortcomings by storing the dictionary terms as one long string of char-
acters, as shown in Figure 5.4. The pointer to the next term is also used to
demarcate the end of the current term. As before, we locate terms in the data
structure by way of binary search in the (now smaller) table. This scheme
saves us 60% compared to fixed-width storage – 12 bytes on average of the

Online edition (c)
2009 Cambridge UP

92 5 Index compression

. . . s y s t i l e s y z y g e t i c s y z y g i a l s y z y g y s z a i b e l y i t e s z e c i n s z o n o . . .

freq.

9

92

5

71

12

. . .

4 bytes

postings ptr.

. . .

4 bytes

term ptr.

3 bytes

. . .

→

→

→

→

→

◮ Figure 5.4 Dictionary-as-a-string storage. Pointers mark the end of the preceding
term and the beginning of the next. For example, the first three terms in this example
are systile, syzygetic, and syzygial.

20 bytes we allocated for terms before. However, we now also need to store
term pointers. The term pointers resolve 400,000× 8 = 3.2× 106 positions,
so they need to be log2 3.2× 106 ≈ 22 bits or 3 bytes long.

In this new scheme, we need 400,000× (4 + 4 + 3 + 8) = 7.6 MB for the
Reuters-RCV1 dictionary: 4 bytes each for frequency and postings pointer, 3
bytes for the term pointer, and 8 bytes on average for the term. So we have
reduced the space requirements by one third from 11.2 to 7.6 MB.

5.2.2 Blocked storage

We can further compress the dictionary by grouping terms in the string into
blocks of size k and keeping a term pointer only for the first term of each
block (Figure 5.5). We store the length of the term in the string as an ad-
ditional byte at the beginning of the term. We thus eliminate k − 1 term
pointers, but need an additional k bytes for storing the length of each term.
For k = 4, we save (k− 1)× 3 = 9 bytes for term pointers, but need an ad-
ditional k = 4 bytes for term lengths. So the total space requirements for the
dictionary of Reuters-RCV1 are reduced by 5 bytes per four-term block, or a
total of 400,000× 1/4× 5 = 0.5 MB, bringing us down to 7.1 MB.

Online edition (c)
2009 Cambridge UP

5.2 Dictionary compression 93

. . . 7 s y s t i l e 9 s y z y g e t i c 8 s y z y g i a l 6 s y z y g y11s z a i b e l y i t e 6 s z e c i n . . .

freq.

9

92

5

71

12

. . .

postings ptr.

. . .

term ptr.

. . .

→

→

→

→

→

◮ Figure 5.5 Blocked storage with four terms per block. The first block consists of
systile, syzygetic, syzygial, and syzygy with lengths of seven, nine, eight, and six charac-
ters, respectively. Each term is preceded by a byte encoding its length that indicates
how many bytes to skip to reach subsequent terms.

By increasing the block size k, we get better compression. However, there
is a tradeoff between compression and the speed of term lookup. For the
eight-term dictionary in Figure 5.6, steps in binary search are shown as dou-
ble lines and steps in list search as simple lines. We search for terms in the un-
compressed dictionary by binary search (a). In the compressed dictionary, we
first locate the term’s block by binary search and then its position within the
list by linear search through the block (b). Searching the uncompressed dic-
tionary in (a) takes on average (0 + 1 + 2 + 3 + 2 + 1 + 2 + 2)/8 ≈ 1.6 steps,
assuming each term is equally likely to come up in a query. For example,
finding the two terms, aid and box, takes three and two steps, respectively.
With blocks of size k = 4 in (b), we need (0 + 1 + 2 + 3 + 4 + 1 + 2 + 3)/8 = 2
steps on average, ≈ 25% more. For example, finding den takes one binary
search step and two steps through the block. By increasing k, we can get
the size of the compressed dictionary arbitrarily close to the minimum of
400,000× (4 + 4 + 1 + 8) = 6.8 MB, but term lookup becomes prohibitively
slow for large values of k.

One source of redundancy in the dictionary we have not exploited yet is
the fact that consecutive entries in an alphabetically sorted list share common
prefixes. This observation leads to front coding (Figure 5.7). A common prefixFRONT CODING

Online edition (c)
2009 Cambridge UP

94 5 Index compression

(a) aid

box

den

ex

job

ox

pit

win

(b) aid box den ex

job ox pit win

◮ Figure 5.6 Search of the uncompressed dictionary (a) and a dictionary com-
pressed by blocking with k = 4 (b).

One block in blocked compression (k = 4) . . .
8automata8automate9au tomatic10automation

⇓

. . . further compressed with front coding.
8automat∗a1⋄e2 ⋄ ic3⋄ i on

◮ Figure 5.7 Front coding. A sequence of terms with identical prefix (“automat”) is
encoded by marking the end of the prefix with ∗ and replacing it with ⋄ in subsequent
terms. As before, the first byte of each entry encodes the number of characters.

Online edition (c)
2009 Cambridge UP

5.3 Postings file compression 95

◮ Table 5.2 Dictionary compression for Reuters-RCV1.

data structure size in MB
dictionary, fixed-width 11.2
dictionary, term pointers into string 7.6
∼, with blocking, k = 4 7.1
∼, with blocking & front coding 5.9

is identified for a subsequence of the term list and then referred to with a
special character. In the case of Reuters, front coding saves another 1.2 MB,
as we found in an experiment.

Other schemes with even greater compression rely on minimal perfect
hashing, that is, a hash function that maps M terms onto [1, . . . , M] without
collisions. However, we cannot adapt perfect hashes incrementally because
each new term causes a collision and therefore requires the creation of a new
perfect hash function. Therefore, they cannot be used in a dynamic environ-
ment.

Even with the best compression scheme, it may not be feasible to store
the entire dictionary in main memory for very large text collections and for
hardware with limited memory. If we have to partition the dictionary onto
pages that are stored on disk, then we can index the first term of each page
using a B-tree. For processing most queries, the search system has to go to
disk anyway to fetch the postings. One additional seek for retrieving the
term’s dictionary page from disk is a significant, but tolerable increase in the
time it takes to process a query.

Table 5.2 summarizes the compression achieved by the four dictionary
data structures.

? Exercise 5.2

Estimate the space usage of the Reuters-RCV1 dictionary with blocks of size k = 8
and k = 16 in blocked dictionary storage.

Exercise 5.3

Estimate the time needed for term lookup in the compressed dictionary of Reuters-
RCV1 with block sizes of k = 4 (Figure 5.6, b), k = 8, and k = 16. What is the
slowdown compared with k = 1 (Figure 5.6, a)?

5.3 Postings file compression

Recall from Table 4.2 (page 70) that Reuters-RCV1 has 800,000 documents,
200 tokens per document, six characters per token, and 100,000,000 post-
ings where we define a posting in this chapter as a docID in a postings
list, that is, excluding frequency and position information. These numbers

Online edition (c)
2009 Cambridge UP

96 5 Index compression

◮ Table 5.3 Encoding gaps instead of document IDs. For example, we store gaps
107, 5, 43, . . . , instead of docIDs 283154, 283159, 283202, . . . for computer. The first
docID is left unchanged (only shown for arachnocentric).

encoding postings list
the docIDs . . . 283042 283043 283044 283045

gaps 1 1 1
computer docIDs . . . 283047 283154 283159 283202

gaps 107 5 43
arachnocentric docIDs 252000 500100

gaps 252000 248100

correspond to line 3 (“case folding”) in Table 5.1. Document identifiers are
log2 800,000 ≈ 20 bits long. Thus, the size of the collection is about 800,000×
200× 6 bytes = 960 MB and the size of the uncompressed postings file is
100,000,000× 20/8 = 250 MB.

To devise a more efficient representation of the postings file, one that uses
fewer than 20 bits per document, we observe that the postings for frequent
terms are close together. Imagine going through the documents of a collec-
tion one by one and looking for a frequent term like computer. We will find
a document containing computer, then we skip a few documents that do not
contain it, then there is again a document with the term and so on (see Ta-
ble 5.3). The key idea is that the gaps between postings are short, requiring a
lot less space than 20 bits to store. In fact, gaps for the most frequent terms
such as the and for are mostly equal to 1. But the gaps for a rare term that
occurs only once or twice in a collection (e.g., arachnocentric in Table 5.3) have
the same order of magnitude as the docIDs and need 20 bits. For an econom-
ical representation of this distribution of gaps, we need a variable encoding
method that uses fewer bits for short gaps.

To encode small numbers in less space than large numbers, we look at two
types of methods: bytewise compression and bitwise compression. As the
names suggest, these methods attempt to encode gaps with the minimum
number of bytes and bits, respectively.

5.3.1 Variable byte codes

Variable byte (VB) encoding uses an integral number of bytes to encode a gap.VARIABLE BYTE

ENCODING The last 7 bits of a byte are “payload” and encode part of the gap. The first
bit of the byte is a continuation bit.It is set to 1 for the last byte of the encodedCONTINUATION BIT

gap and to 0 otherwise. To decode a variable byte code, we read a sequence
of bytes with continuation bit 0 terminated by a byte with continuation bit 1.
We then extract and concatenate the 7-bit parts. Figure 5.8 gives pseudocode

Online edition (c)
2009 Cambridge UP

5.3 Postings file compression 97

VBENCODENUMBER(n)
1 bytes← 〈〉
2 while true
3 do PREPEND(bytes, n mod 128)
4 if n < 128
5 then BREAK

6 n← n div 128
7 bytes[LENGTH(bytes)] += 128
8 return bytes

VBENCODE(numbers)
1 bytestream ← 〈〉
2 for each n ∈ numbers
3 do bytes← VBENCODENUMBER(n)
4 bytestream ← EXTEND(bytestream, bytes)
5 return bytestream

VBDECODE(bytestream)
1 numbers ← 〈〉
2 n← 0
3 for i← 1 to LENGTH(bytestream)
4 do if bytestream[i] < 128
5 then n← 128× n + bytestream[i]
6 else n← 128× n + (bytestream[i]− 128)
7 APPEND(numbers, n)
8 n← 0
9 return numbers

◮ Figure 5.8 VB encoding and decoding. The functions div and mod compute
integer division and remainder after integer division, respectively. PREPEND adds an
element to the beginning of a list, for example, PREPEND(〈1, 2〉, 3) = 〈3, 1, 2〉. EXTEND

extends a list, for example, EXTEND(〈1,2〉, 〈3, 4〉) = 〈1, 2, 3, 4〉.

◮ Table 5.4 VB encoding. Gaps are encoded using an integral number of bytes.
The first bit, the continuation bit, of each byte indicates whether the code ends with
this byte (1) or not (0).

docIDs 824 829 215406
gaps 5 214577
VB code 00000110 10111000 10000101 00001101 00001100 10110001

Online edition (c)
2009 Cambridge UP

98 5 Index compression

◮ Table 5.5 Some examples of unary and γ codes. Unary codes are only shown for
the smaller numbers. Commas in γ codes are for readability only and are not part of
the actual codes.
number unary code length offset γ code
0 0
1 10 0 0
2 110 10 0 10,0
3 1110 10 1 10,1
4 11110 110 00 110,00
9 1111111110 1110 001 1110,001
13 1110 101 1110,101
24 11110 1000 11110,1000
511 111111110 11111111 111111110,11111111
1025 11111111110 0000000001 11111111110,0000000001

for VB encoding and decoding and Table 5.4 an example of a VB-encoded
postings list. 1

With VB compression, the size of the compressed index for Reuters-RCV1
is 116 MB as we verified in an experiment. This is a more than 50% reduction
of the size of the uncompressed index (see Table 5.6).

The idea of VB encoding can also be applied to larger or smaller units than
bytes: 32-bit words, 16-bit words, and 4-bit words or nibbles. Larger wordsNIBBLE

further decrease the amount of bit manipulation necessary at the cost of less
effective (or no) compression. Word sizes smaller than bytes get even better
compression ratios at the cost of more bit manipulation. In general, bytes
offer a good compromise between compression ratio and speed of decom-
pression.

For most IR systems variable byte codes offer an excellent tradeoff between
time and space. They are also simple to implement – most of the alternatives
referred to in Section 5.4 are more complex. But if disk space is a scarce
resource, we can achieve better compression ratios by using bit-level encod-
ings, in particular two closely related encodings: γ codes, which we will turn
to next, and δ codes (Exercise 5.9).

✄ 5.3.2 γ codes

VB codes use an adaptive number of bytes depending on the size of the gap.
Bit-level codes adapt the length of the code on the finer grained bit level. The

1. Note that the origin is 0 in the table. Because we never need to encode a docID or a gap of
0, in practice the origin is usually 1, so that 10000000 encodes 1, 10000101 encodes 6 (not 5 as in
the table), and so on.

Online edition (c)
2009 Cambridge UP

5.3 Postings file compression 99

simplest bit-level code is unary code. The unary code of n is a string of n 1sUNARY CODE

followed by a 0 (see the first two columns of Table 5.5). Obviously, this is not
a very efficient code, but it will come in handy in a moment.

How efficient can a code be in principle? Assuming the 2n gaps G with
1 ≤ G ≤ 2n are all equally likely, the optimal encoding uses n bits for each
G. So some gaps (G = 2n in this case) cannot be encoded with fewer than
log2 G bits. Our goal is to get as close to this lower bound as possible.

A method that is within a factor of optimal is γ encoding. γ codes im-γ ENCODING

plement variable-length encoding by splitting the representation of a gap G
into a pair of length and offset. Offset is G in binary, but with the leading 1
removed.2 For example, for 13 (binary 1101) offset is 101. Length encodes the
length of offset in unary code. For 13, the length of offset is 3 bits, which is 1110
in unary. The γ code of 13 is therefore 1110101, the concatenation of length
1110 and offset 101. The right hand column of Table 5.5 gives additional
examples of γ codes.

A γ code is decoded by first reading the unary code up to the 0 that ter-
minates it, for example, the four bits 1110 when decoding 1110101. Now we
know how long the offset is: 3 bits. The offset 101 can then be read correctly
and the 1 that was chopped off in encoding is prepended: 101→ 1101 = 13.

The length of offset is ⌊log2 G⌋ bits and the length of length is ⌊log2 G⌋+ 1
bits, so the length of the entire code is 2 × ⌊log2 G⌋ + 1 bits. γ codes are
always of odd length and they are within a factor of 2 of what we claimed
to be the optimal encoding length log2 G. We derived this optimum from
the assumption that the 2n gaps between 1 and 2n are equiprobable. But this
need not be the case. In general, we do not know the probability distribution
over gaps a priori.

The characteristic of a discrete probability distribution3 P that determines
its coding properties (including whether a code is optimal) is its entropy H(P),ENTROPY

which is defined as follows:

H(P) = − ∑
x∈X

P(x) log2 P(x)

where X is the set of all possible numbers we need to be able to encode
(and therefore ∑x∈X P(x) = 1.0). Entropy is a measure of uncertainty as
shown in Figure 5.9 for a probability distribution P over two possible out-
comes, namely, X = {x1, x2}. Entropy is maximized (H(P) = 1) for P(x1) =
P(x2) = 0.5 when uncertainty about which xi will appear next is largest; and

2. We assume here that G has no leading 0s. If there are any, they are removed before deleting
the leading 1.
3. Readers who want to review basic concepts of probability theory may want to consult Rice
(2006) or Ross (2006). Note that we are interested in probability distributions over integers (gaps,
frequencies, etc.), but that the coding properties of a probability distribution are independent of
whether the outcomes are integers or something else.

Online edition (c)
2009 Cambridge UP

100 5 Index compression

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

P(x1)

H
(P
)

◮ Figure 5.9 Entropy H(P) as a function of P(x1) for a sample space with two
outcomes x1 and x2.

minimized (H(P) = 0) for P(x1) = 1, P(x2) = 0 and for P(x1) = 0, P(x2) = 1
when there is absolute certainty.

It can be shown that the lower bound for the expected length E(L) of a
code L is H(P) if certain conditions hold (see the references). It can further
be shown that for 1 < H(P) < ∞, γ encoding is within a factor of 3 of this
optimal encoding, approaching 2 for large H(P):

E(Lγ)

H(P)
≤ 2 +

1

H(P)
≤ 3.

What is remarkable about this result is that it holds for any probability distri-
bution P. So without knowing anything about the properties of the distribu-
tion of gaps, we can apply γ codes and be certain that they are within a factor
of ≈ 2 of the optimal code for distributions of large entropy. A code like γ

code with the property of being within a factor of optimal for an arbitrary
distribution P is called universal.UNIVERSAL CODE

In addition to universality, γ codes have two other properties that are use-
ful for index compression. First, they are prefix free, namely, no γ code is thePREFIX FREE

prefix of another. This means that there is always a unique decoding of a
sequence of γ codes – and we do not need delimiters between them, which
would decrease the efficiency of the code. The second property is that γ

codes are parameter free. For many other efficient codes, we have to fit thePARAMETER FREE

parameters of a model (e.g., the binomial distribution) to the distribution

Online edition (c)
2009 Cambridge UP

5.3 Postings file compression 101

of gaps in the index. This complicates the implementation of compression
and decompression. For instance, the parameters need to be stored and re-
trieved. And in dynamic indexing, the distribution of gaps can change, so
that the original parameters are no longer appropriate. These problems are
avoided with a parameter-free code.

How much compression of the inverted index do γ codes achieve? To
answer this question we use Zipf’s law, the term distribution model intro-
duced in Section 5.1.2. According to Zipf’s law, the collection frequency cfi

is proportional to the inverse of the rank i, that is, there is a constant c′ such
that:

cfi =
c′

i
.(5.3)

We can choose a different constant c such that the fractions c/i are relative
frequencies and sum to 1 (that is, c/i = cfi/T):

1 =
M

∑
i=1

c

i
= c

M

∑
i=1

1

i
= c HM(5.4)

c =
1

HM
(5.5)

where M is the number of distinct terms and HM is the Mth harmonic num-
ber. 4 Reuters-RCV1 has M = 400,000 distinct terms and HM ≈ ln M, so we
have

c =
1

HM
≈

1

ln M
=

1

ln 400,000
≈

1

13
.

Thus the ith term has a relative frequency of roughly 1/(13i), and the ex-
pected average number of occurrences of term i in a document of length L
is:

L
c

i
≈

200× 1
13

i
≈

15

i

where we interpret the relative frequency as a term occurrence probability.
Recall that 200 is the average number of tokens per document in Reuters-
RCV1 (Table 4.2).

Now we have derived term statistics that characterize the distribution of
terms in the collection and, by extension, the distribution of gaps in the post-
ings lists. From these statistics, we can calculate the space requirements for
an inverted index compressed with γ encoding. We first stratify the vocab-
ulary into blocks of size Lc = 15. On average, term i occurs 15/i times per

4. Note that, unfortunately, the conventional symbol for both entropy and harmonic number is
H. Context should make clear which is meant in this chapter.

Online edition (c)
2009 Cambridge UP

102 5 Index compression

N documents

Lc most
frequent N gaps of 1 each
terms

Lc next most
frequent N/2 gaps of 2 each
terms

Lc next most
frequent N/3 gaps of 3 each
terms

.

◮ Figure 5.10 Stratification of terms for estimating the size of a γ encoded inverted
index.

document. So the average number of occurrences f per document is 1 ≤ f for
terms in the first block, corresponding to a total number of N gaps per term.

The average is 1
2 ≤ f < 1 for terms in the second block, corresponding to

N/2 gaps per term, and 1
3 ≤ f <

1
2 for terms in the third block, correspond-

ing to N/3 gaps per term, and so on. (We take the lower bound because it
simplifies subsequent calculations. As we will see, the final estimate is too
pessimistic, even with this assumption.) We will make the somewhat unre-
alistic assumption that all gaps for a given term have the same size as shown
in Figure 5.10. Assuming such a uniform distribution of gaps, we then have
gaps of size 1 in block 1, gaps of size 2 in block 2, and so on.

Encoding the N/j gaps of size j with γ codes, the number of bits needed
for the postings list of a term in the jth block (corresponding to one row in
the figure) is:

bits-per-row =
N

j
× (2× ⌊log2 j⌋+ 1)

≈
2N log2 j

j
.

To encode the entire block, we need (Lc) · (2N log2 j)/j bits. There are M/(Lc)
blocks, so the postings file as a whole will take up:

M
Lc

∑
j=1

2NLc log2 j

j
.(5.6)

Online edition (c)
2009 Cambridge UP

5.3 Postings file compression 103

◮ Table 5.6 Index and dictionary compression for Reuters-RCV1. The compression
ratio depends on the proportion of actual text in the collection. Reuters-RCV1 con-
tains a large amount of XML markup. Using the two best compression schemes, γ

encoding and blocking with front coding, the ratio compressed index to collection
size is therefore especially small for Reuters-RCV1: (101 + 5.9)/3600 ≈ 0.03.

data structure size in MB
dictionary, fixed-width 11.2
dictionary, term pointers into string 7.6
∼, with blocking, k = 4 7.1
∼, with blocking & front coding 5.9
collection (text, xml markup etc) 3600.0
collection (text) 960.0
term incidence matrix 40,000.0
postings, uncompressed (32-bit words) 400.0
postings, uncompressed (20 bits) 250.0
postings, variable byte encoded 116.0
postings, γ encoded 101.0

For Reuters-RCV1, M
Lc ≈ 400,000/15 ≈ 27,000 and

27,000

∑
j=1

2× 106 × 15 log2 j

j
≈ 224 MB.(5.7)

So the postings file of the compressed inverted index for our 960 MB collec-
tion has a size of 224 MB, one fourth the size of the original collection.

When we run γ compression on Reuters-RCV1, the actual size of the com-
pressed index is even lower: 101 MB, a bit more than one tenth of the size of
the collection. The reason for the discrepancy between predicted and actual
value is that (i) Zipf’s law is not a very good approximation of the actual dis-
tribution of term frequencies for Reuters-RCV1 and (ii) gaps are not uniform.
The Zipf model predicts an index size of 251 MB for the unrounded numbers
from Table 4.2. If term frequencies are generated from the Zipf model and
a compressed index is created for these artificial terms, then the compressed
size is 254 MB. So to the extent that the assumptions about the distribution
of term frequencies are accurate, the predictions of the model are correct.

Table 5.6 summarizes the compression techniques covered in this chapter.
The term incidence matrix (Figure 1.1, page 4) for Reuters-RCV1 has size
400,000× 800,000 = 40× 8× 109 bits or 40 GB.

γ codes achieve great compression ratios – about 15% better than vari-
able byte codes for Reuters-RCV1. But they are expensive to decode. This is
because many bit-level operations – shifts and masks – are necessary to de-
code a sequence of γ codes as the boundaries between codes will usually be

Online edition (c)
2009 Cambridge UP

104 5 Index compression

somewhere in the middle of a machine word. As a result, query processing is
more expensive for γ codes than for variable byte codes. Whether we choose
variable byte or γ encoding depends on the characteristics of an application,
for example, on the relative weights we give to conserving disk space versus
maximizing query response time.

The compression ratio for the index in Table 5.6 is about 25%: 400 MB (un-
compressed, each posting stored as a 32-bit word) versus 101 MB (γ) and 116
MB (VB). This shows that both γ and VB codes meet the objectives we stated
in the beginning of the chapter. Index compression substantially improves
time and space efficiency of indexes by reducing the amount of disk space
needed, increasing the amount of information that can be kept in the cache,
and speeding up data transfers from disk to memory.

? Exercise 5.4 [⋆]

Compute variable byte codes for the numbers in Tables 5.3 and 5.5.

Exercise 5.5 [⋆]

Compute variable byte and γ codes for the postings list 〈777, 17743, 294068, 31251336〉.
Use gaps instead of docIDs where possible. Write binary codes in 8-bit blocks.

Exercise 5.6

Consider the postings list 〈4, 10, 11, 12, 15, 62, 63, 265, 268, 270, 400〉with a correspond-
ing list of gaps 〈4, 6, 1, 1, 3, 47, 1, 202, 3, 2, 130〉. Assume that the length of the postings
list is stored separately, so the system knows when a postings list is complete. Us-
ing variable byte encoding: (i) What is the largest gap you can encode in 1 byte? (ii)
What is the largest gap you can encode in 2 bytes? (iii) How many bytes will the
above postings list require under this encoding? (Count only space for encoding the
sequence of numbers.)

Exercise 5.7

A little trick is to notice that a gap cannot be of length 0 and that the stuff left to encode
after shifting cannot be 0. Based on these observations: (i) Suggest a modification to
variable byte encoding that allows you to encode slightly larger gaps in the same
amount of space. (ii) What is the largest gap you can encode in 1 byte? (iii) What
is the largest gap you can encode in 2 bytes? (iv) How many bytes will the postings
list in Exercise 5.6 require under this encoding? (Count only space for encoding the
sequence of numbers.)

Exercise 5.8 [⋆]

From the following sequence of γ-coded gaps, reconstruct first the gap sequence and
then the postings sequence: 1110001110101011111101101111011.

Exercise 5.9

γ codes are relatively inefficient for large numbers (e.g., 1025 in Table 5.5) as they
encode the length of the offset in inefficient unary code. δ codes differ from γ codesδ CODES

in that they encode the first part of the code (length) in γ code instead of unary code.
The encoding of offset is the same. For example, the δ code of 7 is 10,0,11 (again, we
add commas for readability). 10,0 is the γ code for length (2 in this case) and the
encoding of offset (11) is unchanged. (i) Compute the δ codes for the other numbers

Online edition (c)
2009 Cambridge UP

5.4 References and further reading 105

◮ Table 5.7 Two gap sequences to be merged in blocked sort-based indexing

γ encoded gap sequence of run 1 1110110111111001011111111110100011111001
γ encoded gap sequence of run 2 11111010000111111000100011111110010000011111010101

in Table 5.5. For what range of numbers is the δ code shorter than the γ code? (ii) γ
code beats variable byte code in Table 5.6 because the index contains stop words and
thus many small gaps. Show that variable byte code is more compact if larger gaps
dominate. (iii) Compare the compression ratios of δ code and variable byte code for
a distribution of gaps dominated by large gaps.

Exercise 5.10

Go through the above calculation of index size and explicitly state all the approxima-
tions that were made to arrive at Equation (5.6).

Exercise 5.11

For a collection of your choosing, determine the number of documents and terms and
the average length of a document. (i) How large is the inverted index predicted to be
by Equation (5.6)? (ii) Implement an indexer that creates a γ-compressed inverted
index for the collection. How large is the actual index? (iii) Implement an indexer
that uses variable byte encoding. How large is the variable byte encoded index?

Exercise 5.12

To be able to hold as many postings as possible in main memory, it is a good idea to
compress intermediate index files during index construction. (i) This makes merging
runs in blocked sort-based indexing more complicated. As an example, work out the
γ-encoded merged sequence of the gaps in Table 5.7. (ii) Index construction is more
space efficient when using compression. Would you also expect it to be faster?

Exercise 5.13

(i) Show that the size of the vocabulary is finite according to Zipf’s law and infinite
according to Heaps’ law. (ii) Can we derive Heaps’ law from Zipf’s law?

5.4 References and further reading

Heaps’ law was discovered by Heaps (1978). See also Baeza-Yates and Ribeiro-
Neto (1999). A detailed study of vocabulary growth in large collections is
(Williams and Zobel 2005). Zipf’s law is due to Zipf (1949). Witten and Bell
(1990) investigate the quality of the fit obtained by the law. Other term distri-
bution models, including K mixture and two-poisson model, are discussed
by Manning and Schütze (1999, Chapter 15). Carmel et al. (2001), Büttcher
and Clarke (2006), Blanco and Barreiro (2007), and Ntoulas and Cho (2007)
show that lossy compression can achieve good compression with no or no
significant decrease in retrieval effectiveness.

Dictionary compression is covered in detail by Witten et al. (1999, Chap-
ter 4), which is recommended as additional reading.

Online edition (c)
2009 Cambridge UP

106 5 Index compression

Subsection 5.3.1 is based on (Scholer et al. 2002). The authors find that
variable byte codes process queries two times faster than either bit-level
compressed indexes or uncompressed indexes with a 30% penalty in com-
pression ratio compared with the best bit-level compression method. They
also show that compressed indexes can be superior to uncompressed indexes
not only in disk usage, but also in query processing speed. Compared with
VB codes, “variable nibble” codes showed 5% to 10% better compression
and up to one third worse effectiveness in one experiment (Anh and Moffat
2005). Trotman (2003) also recommends using VB codes unless disk space is
at a premium. In recent work, Anh and Moffat (2005; 2006a) and Zukowski
et al. (2006) have constructed word-aligned binary codes that are both faster
in decompression and at least as efficient as VB codes. Zhang et al. (2007) in-
vestigate the increased effectiveness of caching when a number of different
compression techniques for postings lists are used on modern hardware.

δ codes (Exercise 5.9) and γ codes were introduced by Elias (1975), who
proved that both codes are universal. In addition, δ codes are asymptotically
optimal for H(P) → ∞. δ codes perform better than γ codes if large num-
bers (greater than 15) dominate. A good introduction to information theory,
including the concept of entropy, is (Cover and Thomas 1991). While Elias
codes are only asymptotically optimal, arithmetic codes (Witten et al. 1999,
Section 2.4) can be constructed to be arbitrarily close to the optimum H(P)
for any P.

Several additional index compression techniques are covered by Witten et
al. (1999; Sections 3.3 and 3.4 and Chapter 5). They recommend using param-PARAMETERIZED CODE

eterized codes for index compression, codes that explicitly model the probabil-
ity distribution of gaps for each term. For example, they show that GolombGOLOMB CODES

codes achieve better compression ratios than γ codes for large collections.
Moffat and Zobel (1992) compare several parameterized methods, including
LLRUN (Fraenkel and Klein 1985).

The distribution of gaps in a postings list depends on the assignment of
docIDs to documents. A number of researchers have looked into assign-
ing docIDs in a way that is conducive to the efficient compression of gap
sequences (Moffat and Stuiver 1996; Blandford and Blelloch 2002; Silvestri
et al. 2004; Blanco and Barreiro 2006; Silvestri 2007). These techniques assign
docIDs in a small range to documents in a cluster where a cluster can consist
of all documents in a given time period, on a particular web site, or sharing
another property. As a result, when a sequence of documents from a clus-
ter occurs in a postings list, their gaps are small and can be more effectively
compressed.

Different considerations apply to the compression of term frequencies and
word positions than to the compression of docIDs in postings lists. See Scho-
ler et al. (2002) and Zobel and Moffat (2006). Zobel and Moffat (2006) is
recommended in general as an in-depth and up-to-date tutorial on inverted

Online edition (c)
2009 Cambridge UP

5.4 References and further reading 107

indexes, including index compression.
This chapter only looks at index compression for Boolean retrieval. For

ranked retrieval (Chapter 6), it is advantageous to order postings according
to term frequency instead of docID. During query processing, the scanning
of many postings lists can then be terminated early because smaller weights
do not change the ranking of the highest ranked k documents found so far. It
is not a good idea to precompute and store weights in the index (as opposed
to frequencies) because they cannot be compressed as well as integers (see
Section 7.1.5, page 140).

Document compression can also be important in an efficient information re-
trieval system. de Moura et al. (2000) and Brisaboa et al. (2007) describe
compression schemes that allow direct searching of terms and phrases in the
compressed text, which is infeasible with standard text compression utilities
like gzip and compress.

? Exercise 5.14 [⋆]

We have defined unary codes as being “10”: sequences of 1s terminated by a 0. In-
terchanging the roles of 0s and 1s yields an equivalent “01” unary code. When this
01 unary code is used, the construction of a γ code can be stated as follows: (1) Write
G down in binary using b = ⌊log2 j⌋+ 1 bits. (2) Prepend (b− 1) 0s. (i) Encode the
numbers in Table 5.5 in this alternative γ code. (ii) Show that this method produces
a well-defined alternative γ code in the sense that it has the same length and can be
uniquely decoded.

Exercise 5.15 [⋆ ⋆ ⋆]

Unary code is not a universal code in the sense defined above. However, there exists
a distribution over gaps for which unary code is optimal. Which distribution is this?

Exercise 5.16

Give some examples of terms that violate the assumption that gaps all have the same
size (which we made when estimating the space requirements of a γ-encoded index).
What are general characteristics of these terms?

Exercise 5.17

Consider a term whose postings list has size n, say, n = 10,000. Compare the size of
the γ-compressed gap-encoded postings list if the distribution of the term is uniform
(i.e., all gaps have the same size) versus its size when the distribution is not uniform.
Which compressed postings list is smaller?

Exercise 5.18

Work out the sum in Equation (5.7) and show it adds up to about 251 MB. Use the
numbers in Table 4.2, but do not round Lc, c, and the number of vocabulary blocks.

	Index compression
	Statistical properties of terms in information retrieval
	Heaps' law: Estimating the number of terms
	Zipf's law: Modeling the distribution of terms

	Dictionary compression
	Dictionary as a string
	Blocked storage

	Postings file compression
	Variable byte codes
	Gamma codes

	References and further reading

