Relevance feedback + Text classification (Chapter 9+13)

Definition 2 (Naive Bayes Classifier)

P(x) and probability of the predictor given the class P(x|c)

Definition 1 (Rocchio relevance feedback) Rocchio relevance feedback has the form

$$q_m = \alpha q_0 + \beta \frac{1}{|D_r|} \sum_{\vec{d_r} \in D_r} \vec{d_r} - \gamma \frac{1}{|D_{nr}|} \sum_{\vec{d_{nr}} \in D_{nr}} \vec{d_{nr}}$$

where q_0 is the original query vector, D_r is the set of relevant documents, D_{nr} is the set of non-relevant documents and the values α , β , γ depend on the system setting.

Exercise 9/1

What is the main purpose of Rocchio relevance feedback?

Text classification and Naive Bayes (Chapter 13)

Naive Bayes (NB) Classifier assumes that the effect of the value of a predictor x on a given class c is class conditional independent. Bayes theorem provides a way of calculating the posterior probability P(c|x) from class prior probability P(c), predictor prior probability

The class with the highest posterior probability is the outcome of prediction.

Exercise 9/2

A user's primary query is cheap CDs cheap DVDs extremely cheap CDs. The user has a look on two documents: doc1 a doc2, marking doc1 CDs cheap software cheap CDs as relevant and doc2 cheap thrills DVDs as non-relevant. Assume that we use a simple tf scheme without vector length normalization. What would be the restructured query vector after considering the Rocchio relevance feedback with values $\alpha = 1$, $\beta = 0.75$, and $\gamma = 0.25$?

We rewrite the exercise to the table for an easier processing.

	relevant	non-relevant	
terms	doc1	doc2	que
CDs	2 .	0	2
cheap	2	1	3
software	1	0	0
thrills (0 <	1	0
DVDs	0 /	1	1
extremely	0	0	1

Table 1:

$$g = [230011]$$
 $b \circ c_1 = [221000]$
 $d \circ c_2 = [230011]$

$$4m = \sqrt{90} + 10 \log_{1} - p \log_{2}$$

$$= 1.90 + 0.75 \log_{1} - 0.15 \log_{2}$$

$$= [3.5 + 1.25 0.75 - 0.25 0.75]$$

$$\cos \sin (3m) \cdots) \in [-1.17]$$