Relevance feedback + Text classification (Chapter 9+13)

Definition 1 (Rocchio relevance feedback) Rocchio relevance feedback has the form

$$q_m = \alpha q_0 + \beta \frac{1}{|D_r|} \sum_{\vec{d_r} \in D_r} \vec{d_r} - \gamma \frac{1}{|D_{nr}|} \sum_{\vec{d_{nr}} \in D_{nr}} \vec{d_n}$$

where q_0 is the original query vector, D_r is the set of relevant documents, D_{nr} is the set of non-relevant documents and the values α , β , γ depend on the system setting.

Exercise 9/1

What is the main purpose of Rocchio relevance feedback?

Exercise 9/2

A user's primary query is chang CDs chang DVDs extremely chang CDs. The user has a look on two documents: 'dor's 1 doc's, marking doc'! CDs' shorp-spiftware chang CDs as relevant and doc'2 chang thrills DVDs as non-relevant. Assume that we use a simple scheme without vector length normalization. What would be the restructured query vector after considering the Rocchio relevance feedback with values $\alpha=1,\,\beta=0.75,\,{\rm and}\,\gamma=0.25^\circ$

We rewrite the exercise to the table for an easier processing.

	relevant	non-relevant	
terms	doc1	doc2	(
CDs	2 -	0	,
cheap	2	1	1
software	1	0	(
thrills (0 <	1	(
DVDs	0 /	1 /	1
extremely	0	0	1

Table 1:

Text classification and Naive Bayes (Chapter 13)

Definition 2 (Naive Bayes Classifier)

Naive Bayes ($\dot{N}\dot{B}$) Classifier assumes that the effect of the value of a predictor x on a given class c is class conditional independent. Bayes theorem provides a way of calculating the posterior probability P(c|x) from class prior probability P(c), predictor prior probability P(x) and probability of the predictor given the class P(x|c)

$$P(c|x) = \frac{P(x|c)P(c)}{P(x)}$$

and for a vector of predictors $X = (x_1, ..., x_n)$

$$P(c|X) = \frac{P(x_1|c)...P(x_n|c)P(c)}{P(x_1)...P(x_n)}$$
.

The class with the highest posterior probability is the outcome of prediction.

$$\overrightarrow{\times} = \left[\times_{1} \times_{2} \times_{3} \times_{n} \cdots \times_{n} \right]$$

$$P(x_1, x_2) = P(x_1) \cdot P(x_2) -$$

$$\begin{cases}
\varphi = \begin{bmatrix} 2 & 3 & 0 & 0 & 1 & 1 \\
0 & 1 & 1 & 0 & 0
\end{cases}
\end{cases}
\qquad
\begin{cases}
\varphi \left(\times_{A_1} \times_{A_2} \times_{S_3} \right) = P\left(\times_{A_1} \times_{A_2} \right) \cdot P\left(\times_{A_2} \right) \\
p\left(x_i \mid x_i \mid x_i, x_i, C_k \right) = p(x_i \mid C_k)
\end{cases}$$

Exercise 13/2

Considering the table of observations, use the Naive Bayes classifier to recommend whether to Play Golf given a day with Outlook = Rainy, Temperature = Mild, Humidity = Normal and Windy = True. Do not deal with the zero-frequency problem

Outlook	Temperature	Humidity	Windy	Play Golf
Rainy	Hot	High	False	No
Rainy	Hot	High	True	No
Overcast	Hot	High	False	Yes
Sunny	Mild	High	False	Yes
Sunny	Cool	Normal	False	Yes
Sunny	Cool	Normal	True	No
Overcast	Cool	Normal	· True	Yes
Rainy	Mild	High	False	No
Rainy	Cool	Normal	False	Yes
Sunny	Mild	Normal	False	Yes
Rainy	Mild	Normal	· True	Yes
Overcast	Mild	High	· True	Yes
Overcast	Hot	Normal	False	Yes
Sunny	Mild	High	True	No

$$\frac{3}{4} = 0.014$$

$$P(W_0 | ...) \propto \frac{5}{44} \cdot \frac{3}{5} \cdot \frac{2}{5}$$

$$\frac{1}{5} \cdot \frac{3}{5} = 0.01$$

$$P(x_{i} \mid x_{i+1}) = P(x_{i} \mid C_{k})$$

$$P(x_{i} \mid x_{i+1}) = P(x_{i} \mid x_{i+1})$$

$$P(x_{i+1}) = P(x_{i} \mid x_{i+1})$$

$$P(x_{i+1}) = P(x_{i} \mid x_{i+1})$$

$$P(Yes | ...) = \frac{61014}{01014 + 01010}$$