Exercise 2/1 Are the following statements true or false? In a Boolean retrieval system, stemming  never lowers precision. In a Boolean retrieval system, stemming  never lowers recall. Stemming increases the size of the  vocabulary. Stemming should be invoked at indexing  time but not while processing a query. 1. 2. 3. 4. Exercise 2/5 Exercise 2/4 Exercise 2/9 The Term Vocabulary + Postings list (Chapter 2) Below is a part of index with positions in the form doc1: ⟨pos1, pos2, pos3, . . .⟩; doc2: ⟨pos1, pos2, . . .⟩; . . . angels: 2 : ⟨36, 174, 252, 651⟩; 4 : ⟨12, 22, 102, 432⟩; 7 : ⟨17⟩; fools: 2 : ⟨1, 17, 74, 222⟩; 4 : ⟨8, 78, 108, 458⟩; 7 : ⟨3, 13, 23, 193⟩; fear: 2 : ⟨87, 704, 722, 901⟩; 4 : ⟨13, 43, 113, 433⟩; 7 : ⟨18, 328, 528⟩; in: 2 : ⟨3, 37, 76, 444, 851⟩; 4 : ⟨10, 20, 110, 470, 500⟩; 7 : ⟨5, 15, 25, 195⟩; rush: 2 : ⟨2, 66, 194, 321, 702⟩; 4 : ⟨9, 69, 149, 429, 569⟩; 7 : ⟨4, 14, 404⟩; to: 2 : ⟨47, 86, 234, 999⟩; 4 : ⟨14, 24, 774, 944⟩; 7 : ⟨19, 319, 599, 709⟩; tread: 2 : ⟨57, 94, 333⟩; 4 : ⟨15, 35, 155⟩; 7 : ⟨20, 320⟩; • where: 2 : ⟨67, 124, 393, 1001⟩; 4 : ⟨11, 41, 101, 421, 431⟩; 7 : ⟨15, 35, 735⟩; The following terms are phrase queries. Which documents correspond to the following  queries and on which positions? The index is incorrect. How? (hint: what properties must each index have?) 1. 2. 3. 4. 5. 6. 7. 8. Query1: fools          rush         in Query2: fools rush in AND angels      fear      to      tread. For the Porter stemmer group shown in  Definition 3: What is the purpose of including an  identity rule such as SS → SS? Applying just this rule group, what will  the following words be stemmed to?:  circus, canaries, boss What rule should be added to correctly  stem pony? The stemming for pony and ponies might  seem strange. Does it have a deleterious  effect on retrieval? Why or why not? 1. 2. 3. 4. List the comparisons performed to intersect the  following sorted non-positional postings lists with  skip pointers of frequency 5. 1. circus canaries boss P1 = [2, 10, 12, 16] P2 = [1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]