Index Compression + Vector Space Model (Chapter 5+6)

Banked retr. results: guery * doc

doc 1 = 1*1+0*1+1*0+0*1 = 1 $doc_2 = 1+1 = 2$ $doc_3 = 1+1 = 2$

c, using TF (term frequency):

 ϕ_1 using IDF (inverse document frequency)

TE-IDE + Euclidean normalization

delete (1)

insert (1)

doc_2 = 4 + 33 = 37 doc_3 = 24 + 29 = (53) BEST HIT 3

Consider the frequency table of the words of three documents. Calculate the tf-idf weight of the terms car. auto. insurance. and best for each document idf values of terms are in the table

Exercise 6/2

Count document representations as normalized Euclidean weight vectors for each document from the previous exercise. Each vector has four components, one for each term.

Exercise 6/3

Based on the weights from the last exercise, compute the similarity scores (scalar products) of the three documents for the query 0: "car insurance"

Use each of the two weighting schemes: a) Term weight is 1 if the query contains the word and A otherwise b) Euclidean normalized tf-idf

Exercise 6/4

Compute the Levenshtein distance between paris and alice.

Write down the matrix of distances between all prefixes as computed by Algorithm 2.

Algorithm 3 (Leve

 $len_{n,0}(i, j) =$

where $1_{(\alpha, \phi b_j)}$ is the length (i, j) is the distort of string b.

Algorithm 2 (Levenshtein distance – imperative approach) 1: function LevensersinDistance(e ₁ , e ₂)														
$i: for i = 0 to s_1 do$		_				_								
3: m[i, 0] = i			E	P	a	г	i	8						
4 end for			Ì α	1	2	9	4	5						
5. for $j = 0$ to $ s_2 $ do		ε	0	1	2	3	4	3						
s = m[0, j] = j		8	1	1	1									
2) end for		1	2											
s for $i = 1$ to $ s_1 $ do		-	-			-	-	-						
s: for $j = f$ to $ s_2 $ do		1	э											
is: if $s_1[i] == s_2[j]$ then		c	4											
11: $m[i, j] = min\{m[i - 1, j] + 1, m[i, j - 1] + 1, m[i - 1, j - 1]\}$		0	5											
II: else	l	~			_	_	_	_						
13: $m[i, j] = \min\{m[i - 1, j] + 1, m[i, j - 1] + 1, m[i - 1, j - 1] + 1\}$	- Item there of the main demonstrate measurements a star													
14: end if) iterations of the main dynamic programming step.													
13: end for														
te end for														
17: return m[s ₁ , s ₂]														
18: end function														
Algorithm 3 (Levenshtein Distance – declarative approach)	_								-					

term frequency

Represent the documents and the query as vectors :

 $\begin{array}{l} doc_1 \ = \ [0,1,0,1] \\ doc_2 \ = \ [0,1,0,0] \\ doc_3 \ = \ [0,0,0,1] \end{array}$

docz = [4) 33,33,0]

doc3 = [(2), 0, (2), 17]

q = [(1) 0,(1) 0]

tf-idf

idf

s ₂							
ishtein Distance – declarative approach) strings a and b is given by $lev_{a,b}([a], [b])$ where		6	p	a	r	i	8
	6	1	11	2	3	4	5
$\max(i, j)$ if $\min(i, j) = 0$ ($\lim_{k \to \infty} (i - 1, i) + 1$	a	1	1	1	2	3	4
min $\{ len_{n,k}(i, j-1) + 1 \}$ otherwise	1	2	2	2	2	3	4
$lev_{n,b}(i - 1, j - 1) + 1_{(a_i \neq b_j)}$	i	13	3	3	3	2	3
indicator function equal to 1 when $a_i \neq b_j$, and θ otherwise.	c	4	4	4	4	3	3
a secones we just a connectors of string a and the first 3 characters	e	1	5	5	5	4	4

ε p a r i s ε 0 1 2 3 4 5

1 2

Table 4: Initialization of the matrix

Table 6: The final matrix with the Levenshtein distance in bold.

Exercise 5/5

From the following sequence of v-encoded gaps. reconstruct first the gaps list and then the original postings list. Recall that the a code encodes a number n with n 1s followed by one 0.

"new york city"

the

york

city

(decimal / unary)

(offset of length 0)

(zero , d-code of '1')

(zero, &-code of the offset)

[9, 15, 18, 77, 84]

C

0

is 1111110 (or 0000001). The alternative representation in parentheses is equivalent but for this course we use the default representation.

offset(n)), offset(n). Offset is a binary representation of a number n without the highest bit (1). The length of this offset encoded in the unary (α) code. Then the number 60 is encoded in ~ as 111110 11100

10

2

1

1 111

Ŋ ų 1

4 3

[1, 8, 10]

(posting list)

Definition 1 (α code) Unary code, also referred to as α code, is a coding type where a number n is represented by a sequence of n 1s (or 0s) and terminated with one 0 (or 1). That is, 6 in unary code

Definition 2 (γ code)

 γ code is a coding type, that consists of an offset and its length: $\gamma(n) = \alpha(\text{length of }$

replace (1) / move (0)

} dot/scalar product