Vector Space Classification (Chapter 14)

14/1

What is the contiguity hypothesis?

14/3

Discuss the main idea behind the k-Nearest Neighbor (kNN) classification. How large k (how many neighbors) should we use?

Algorithm 1 (Rocchio classification) 1: $function TRAIN-ROCCHIO(\mathbb{C}, \mathbb{D})$

11: end function

13: end function

1: function Train-kNN(ℂ, ⅅ)

```
2: for all c_{j} \in \mathbb{C} do

3: D_{j} \leftarrow \{d: (d, c_{j}) \in \mathbb{D}\}

4: Contr(\vec{\mu}_{j}) \leftarrow \frac{1}{|D_{j}|} \sum_{d \in D_{j}} \vec{v}(d)

5: end for

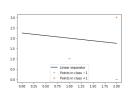
6: return \{\vec{\mu}_{1}, \dots, \vec{\mu}_{J}\}

7: end function

8: 9: function APPLY-ROCCHIO(\{\vec{\mu}_{1}, \dots, \vec{\mu}_{J}\}, d)

10: return arg min, |\vec{\mu}_{j} - \vec{v}(d)|
```

Algorithm 2 (k nearest neighbor classification)


2:
$$\mathbb{D}' \leftarrow PREPROCESS(\mathbb{D})$$

3: $k \leftarrow SELECT\text{-}K(\mathbb{C}, \mathbb{D}')$
4: return \mathbb{D}', k
5: end function
6:
7: function APPLY-KNN($\mathbb{C}, \mathbb{D}', k, d$)
8: $S_k \leftarrow COMPUTENEARESTNEIGHBORS(\mathbb{D}', k, d)$
9: for all $c_j \in \mathbb{C}$ do
10: $p_j \leftarrow |S_k \cap c_j|/k$
11: end for
12: return $\arg \max_i p_j$

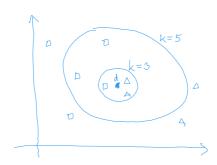
14/2

Discuss the main idea behind the Rocchio classification.

14/4

Build Rocchio and 1NN classifiers for the training set {([1,1],1),([2,0],1),([2,3],2)} and classify the document q= [1,2]. Do the classifiers agree?

$$\overrightarrow{M}_{1} = \left[\frac{3}{2} \mid \frac{1}{2}\right] = \left[1,5 \mid 0,5\right]$$


$$|\vec{c}''_1 - \vec{q}| = \sqrt{(1, s - 1)^2 + (\sigma_1 s - 2)^2} = \sqrt{2, s}$$
 $|\vec{c}''_2 - \vec{q}| = \dots = \sqrt{2}$

$$\frac{1NN: k=1}{|\vec{A}_1 - \vec{q}|} \rightarrow \text{class 1}$$

$$|\vec{A}_2 - \vec{q}| = \dots = \sqrt{1}$$

$$|\vec{A}_2 - \vec{q}| = \dots = \sqrt{5}$$

