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Introduction

Introduction
Why not use Transformers?

Applications of Transformers [1] for full-text search are limited:
Documents are retrieved by keyword matching and top ten are reranked for speed. [2]
Due to O(w2) space complexity of Attention, only short documents (QA) can be reranked.

sBERT [3] can project short documents to semantic vector space, but it is supervised.
Big Bird [4] makes Attention O(w) and could be used to rerank long documents.
Until speed and space are improved, keyword matching determines search results.

How to improve keyword matching?

Keyword matching similarity functions (TF-IDF, BM25) disregard word similarity.
Shallow embeddings (word2vec [5, 6], GloVe [7], fastText [8]) measure word similarity.
TF-IDF and BM25 can support soft keyword matching [9–12] using embeddings.
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Word Embeddings?

Figure: The training objective of word2vec and fastText CBOW models.
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Keyword Matching? I

Figure: Keyword matching (left), word embeddings (middle), and soft keyword matching (right).
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Keyword Matching? II

Demo of soft keyword matching
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Keyword Matching? III

Figure: Text classification performance of soft keyword matching compared to other methods.
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Introduction
How to improve keyword matching?

TF-IDF and BM25 can support soft keyword matching [9–12] using embeddings.
Our research group develops and maintains Gensim [13]:

Essential Python NLP library: 2.6k article citations and 11.2k stars on GitHub
Contains hardware-accelerated implementation of shallow word embeddings.
Perfect tool to prototype, implement, and evaluate enhanced word embeddings.
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Position-dependence
Introduction

Word2vec [5, 6] and fastText [8] CBOW models are trained to minimize the distance
between the mean of context word embeddings and the masked word embedding.
However, the position of words in context is not taken into account:
1. “Unlike dogs, cats are ???.” 2. “Unlike cats, dogs are ???.”

Mikolov et al. [14] achieved +5% accuracy on English word analogy using
position-dependent weighting [14, Section 2.2]. No implementation exists.

vC =
1
|P|

∑
p∈P

dp =⇒ vC =
1
|P|

∑
p∈P

dp � ut+p

This summer, we drafted an implementation for Gensim. Open research questions:
1. What is the optimal initialization?
2. Are Mikolov’s results reproducible?

3. Is the speed practically useful?
4. How does it improve end tasks?
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Position-dependence
Word Analogy? (Source)

Figure: An example of the English word analogy task.
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Position-dependence
What is the optimal initialization?

FastText initializes dp to Uniform(± 1
fanout).

The hidden layer receives 1
|P|

∑
p∈P dp, which tends to N(0,

σ2

|P|) by the CLT.

To keep the same initial learning rate, we require 1
|P|

∑
p∈P dp � ut+p ∼ N(0,

σ2

|P|).

We have several options for initialization:
1. dp ∼ Uniform(± 1

fanout ), ut+p ∼ dp.
2. dp ∼ Uniform(± 1

fanout ), ut+p ∼ 1.
3. dp � ut+p ∼ Uniform(± 1

fanout ).
4. dp � ut+p ∼ N(0, σ2).

Which initialization options are optimal?
1. Var[dp � ut+p] < σ2, leading to smaller initial learning rate.
2. Var[dp � ut+p] = σ2, but the gradients to dp explode. (the only option we tried)
3. Var[dp � ut+p] = σ2, but only the square of positive uniform distribution is known [15].
4. Var[dp � ut+p] = σ2, and the square of normal distribution is known [16].
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Position-dependence
dp ∼ Uniform(± 1

fanout), ut+p ∼ Uniform(±
1

fanout)

Figure: Probability densities of random variables for initialization option nr. 1.
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Position-dependence
dp � ut+p ∼ Uniform(± 1

fanout) using the method of Ravshan [15]

Figure: Probability densities of random variables for initialization option nr. 3.
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Position-dependence
dp � ut+p ∼ N(0, σ2) using the method of Pinelis [16]

Figure: Probability densities of random variables for initialization option nr. 4.
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Position-dependence
Are Mikolov’s results [14] reproducible?

We reproduced +10%∗ accuracy on English word analogy with these differences:
For speed, we used the 2017 English Wikipedia (2.4B words, ca 4% of Common Crawl).
For speed, we did only modeled unigrams, whereas Mikolov modeled up to 7-grams.

Disabled Enabled

Mikolov et al. [14] 80% 85%
Our results 62% 72%

Table: English word analogy task accuracies with and without position-dependent weighting
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https://github.com/RaRe-Technologies/gensim-data/releases/tag/wiki-english-20171001
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Position-dependence
Is the speed practically useful?

Using full position-dependent weighting incurs 2–3× slowdown in training time.
The speed is not practically useful: training a model for just 3 epochs without
position-dependent weighting leads to +10%∗ accuracy on English word analogy.

Can we make the speed practically useful?
No support in BLAS for �, abusing ?SBMV matrix op. incurs further slowdown.
Replacing positional vectors with positional scalars removes all gains to accuracy.
Reducing the dimensionality of positional vectors does the trick:

Disabled Enabled at 10d Enabled at 300d

Accuracy∗ 62% 72% 72%
Training duration 2h 12m 2h 29m 5h 00m

Table: English word analogy task accuracies and training durations
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Position-dependence
Reducing the dimensionality of positional vectors

Figure: English word analogy task accuracies (red) and training durations (blue).
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Position-dependence
What do the positional vectors look like?

Figure: The positional vector features are normally distributed and continuous across positions.
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Position-dependence
Can we use larger context windows now?

Figure: English word analogy task accuracies (red) and training durations (blue) for different
context window sizes with position-dependent weighting enabled (dashed) and disabled (solid).
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Position-dependence
How does it improve the end tasks?

We have conducted experiments only on English word analogies.
Possible end tasks:
1. Text classification [17]
2. Information retrieval [18, Section 4]
3. Word similarities [8, Section 5.1]

4. Language modeling [8, Section 5.6]
5. Semantic text similarity [10]
6. . . . other ideas?
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Subword sizes
Parameter optimization

Unlike word2vec [5, 6], fastText [8] embeds not only words, but also subwords.
This speeds up training and allows inference of embeddings for unknown words.
However, previous work reports optimal subword sizes only for English and German.
Our experiments suggest:
1. 5% improvement on Czech word analogy with optimal subword sizes over defaults.
2. A fast method for estimating the optimal subword sizes from corpus statistics.
3. Improvements on the language modeling end task.

Hyphenation

Hyphenation splits words into subwords based on morphology or phonology.
TEX’s hyphenation algorithm [19] achieves perfect accuracy with tiny models. [20, 21]
fastText embeds only subwords of fixed size and ignores morphology.
Hyphenating fastText should decrease model size and speed up training.
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Subword sizes
Subwords? (Source)

Figure: In word2vec, only the entire word is embedded (right). In fastText, n-grams are also
embedded (left), which introduces weight sharing and enables inference for unknown words.

V. Novotný · Word Embeddings · October 15, 2020 21 / 28

https://amitness.com/2020/06/fasttext-embeddings


Position-dependence and subword sizes Subword sizes

Subword sizes
Hyphenation? (Source)

Figure: In typesetting, hyphenation enables justification without excessive spacing. To aid
understanding/oration, hyphenation occurs at morpologically/phonetically meaningful points.
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Conclusion
Sounds fun?

Take a look at our bachelor’s and master thesis topics:
Positional weighting of fastText word embeddings (bachelor’s thesis, master’s thesis)
Finding optimal n-gram sizes for fastText Model (bachelor’s thesis, master’s thesis)
. . . or come up with your own!
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