

Central European Institute of Technology BRNO | CZECH REPUBLIC

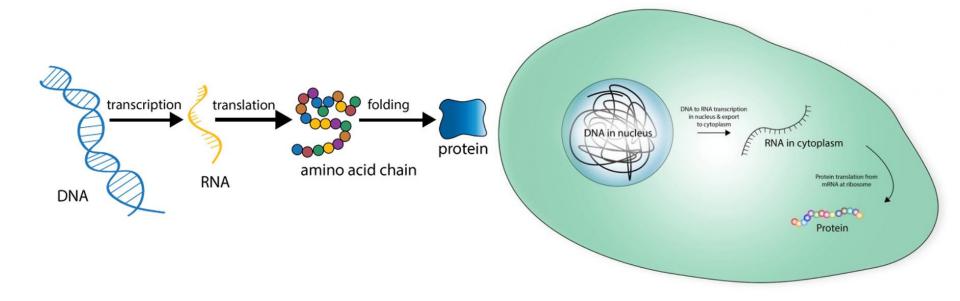
National Institute on Aging

Vlastimil Martinek

Detecting RNA modification from nanopore signal

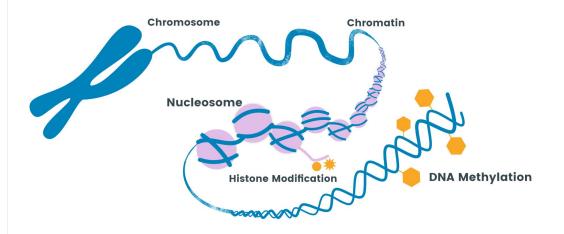
exercises +

Central dogma of molecular biology - refresh

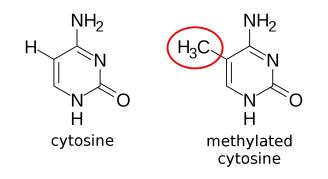


Modifications

- Alter exposed DNA/RNA
- Change gene expression
- Can be a biological target
 - Immune system
 - Repair
- Multiple types of mods

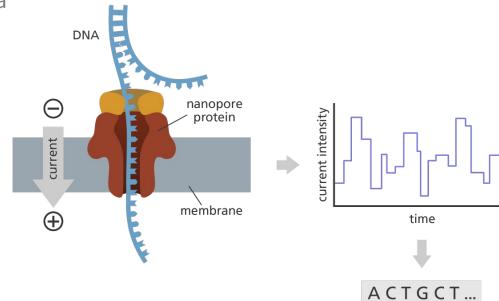


ACCGTC <=> AC'C'GTC'



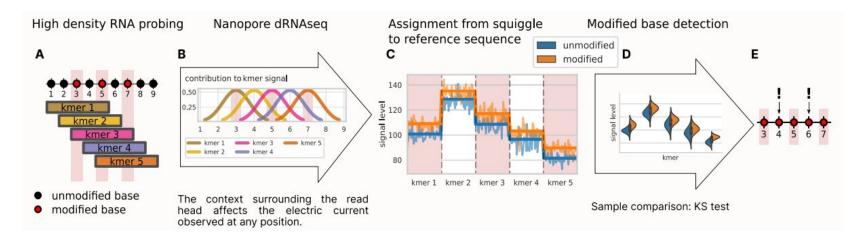
ONT (Oxford nanopore technologies)

- Sequencing to attain digital data
- Basecalling



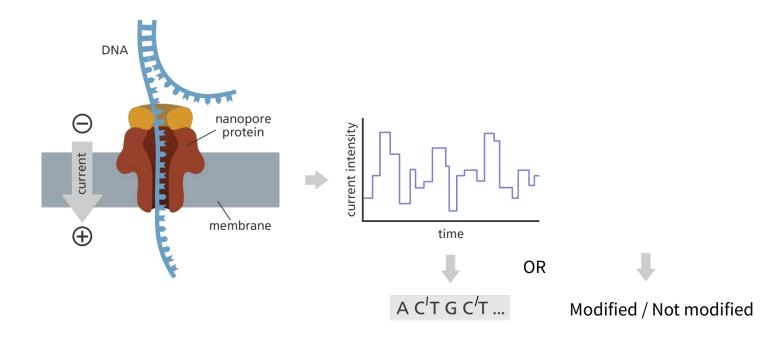
Existing methods

- Signal has mods information
- Need for a control sequence
- Dependent on basecaller



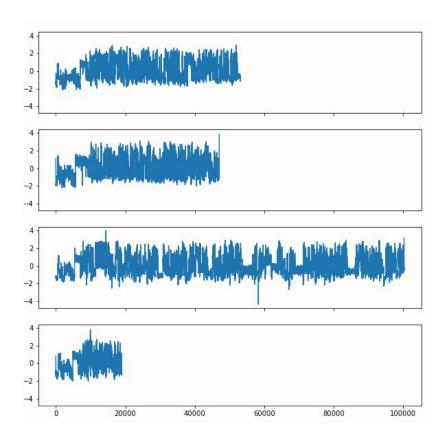
New approach

Detect modifications without reference



Data

- 1D signal per sequence
- Variable length
- Two labels modified/non-modified
- 1M positives, 2M negatives
- Preprocessing?

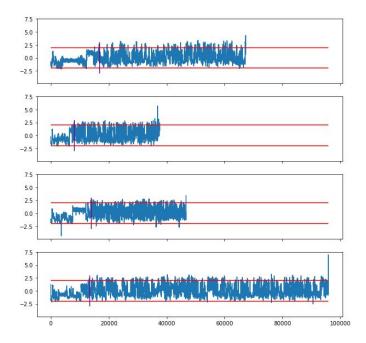


Data exploration and preparation

Preprocessing

- Cut primers
- Window
- Balanced sampling
- Standardized read-wise
- ...?

```
def gen():
    while True:
    thresh = random.random()
    if(thresh > 0.5):
        yield 0
    yield 1
```



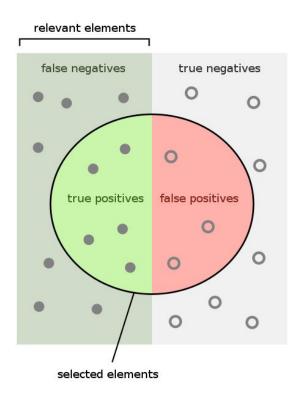
Noisy data labels

High false-positive rate (50-70%)

All negatives are correct

Affects metrics - perfect model 65-75%

How to tackle?



Label cleaning

Confident learning (google, mit, cleanlab)

Input: Labels + predicted probabilities

Predicts label mistakes on validation data

(kfold needed to clean the dataset)

From the matrix on the right in the figure, to estimate label issues:

- 1. Multiply the joint distribution matrix by the number of examples. Let's assume 100 examples in our dataset. So, by the figure above (*Q* matrix on the right), there are 10 images labeled *dog* that are actually images of *foxes*.
- 2. Mark the 10 images labeled dog with *largest* probability of belonging to class *fox* as label issues.
- 3. Repeat for all non-diagonal entries in the matrix

$C_{\tilde{y},y^*}$	y*=dog	$y^* = fox$	y*=cow	$\widehat{\boldsymbol{Q}}_{\widetilde{\boldsymbol{y}},\boldsymbol{y}^*}$	y*=dog	$y^* = fox$	y*=cow
$\tilde{y}=dog$	100	40	20	$\tilde{y} = dog$	0.25	0.1	0.05
$\tilde{y}=fox$	56	60	0	$\tilde{y}=fox$	0.14	0.15	0
ỹ=cow	32	12	80	ỹ=cow	0.08	0.03	0.2

y~ current labels y* true labels

Confident learning

"The central idea is that when the predicted probability of an example is greater than a per-class-threshold, we *confidently count* that example as actually belonging to that threshold's class. The thresholds for each class are the average predicted probability of examples in that class."

$C_{\tilde{y},y^*}$	y*=dog	$y^* = fox$	y*=cow	$\widehat{\boldsymbol{Q}}_{\widetilde{\boldsymbol{y}},\boldsymbol{y}^*}$	y*=dog	$y^* = fox$	y*=cow	
$\tilde{y}=dog$	100	40	20	$\tilde{y}=dog$	0.25	0.1	0.05	y~ actual labels
$\tilde{y}=fox$	56	60	0	$\tilde{y}=fox$	0.14	0.15	0	y* true labels
ỹ=cow	32	12	80	ỹ=cow	0.08	0.03	0.2	

Preliminary results = it works (positive labels marked)

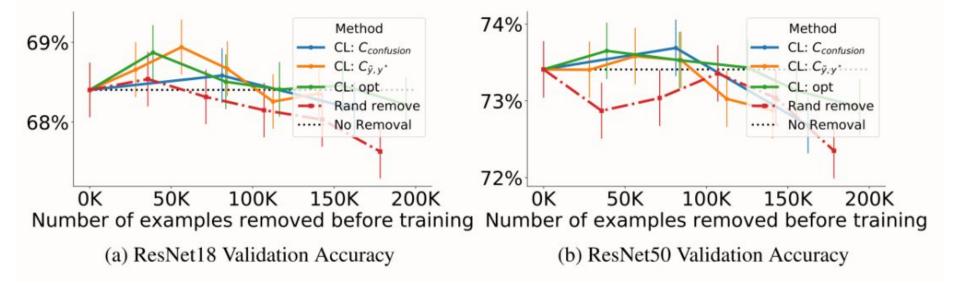
Confident learning (CIFAR-10 acc)

CL Improves State-of-the-Art in Learning with Noisy Labels by over 10% on average and by over 30% in high noise and high sparsity regimes

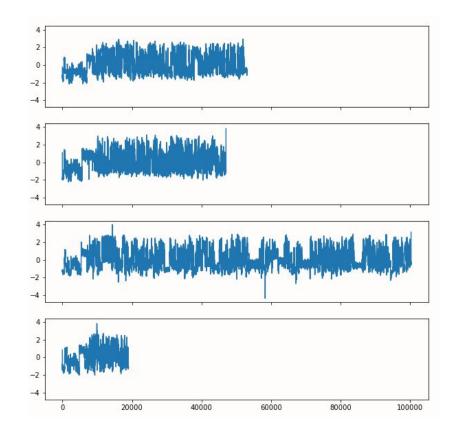
Noise	[0.2					0.4				0.7			
Sparsity	AVG	0	0.2	0.4	0.6	0	0.2	0.4	0.6	0	0.2	0.4	0.6	
CL: C _{CONFUSION}	0.662	0.854	0.854	0.863	0.857	0.806	0.796	0.802	0.798	0.332	0.363	0.328	0.291	
$\operatorname{CL}: oldsymbol{C}_{ ilde{y},y^*}$	0.673	0.848	0.858	0.862	0.861	0.815	0.810	0.816	0.815	0.340	0.398	0.282	0.372	
CL: OPT	0.696	0.860	0.859	0.865	0.862	0.810	0.801	0.814	0.825	0.468	0.420	0.399	0.371	
SCE-LOSS	0.615	0.872	0.875	0.888	0.844	0.763	0.741	0.649	0.583	0.330	0.287	0.309	0.240	
MIXUP	0.622	0.856	0.868	0.870	0.843	0.761	0.754	0.686	0.598	0.322	0.313	0.323	0.269	
MENTORNET	0.590	0.849	0.851	0.832	0.834	0.644	0.642	0.624	0.615	0.300	0.316	0.293	0.279	
CO-TEACHING	0.569	0.812	0.813	0.814	0.806	0.629	0.616	0.609	0.581	0.305	0.302	0.277	0.260	
S-MODEL	0.556	0.800	0.800	0.797	0.791	0.586	0.612	0.591	0.575	0.284	0.285	0.279	0.273	
REED	0.560	0.781	0.789	0.808	0.793	0.605	0.604	0.612	0.586	0.290	0.294	0.291	0.268	
BASELINE	0.554	0.784	0.792	0.790	0.782	0.602	0.608	0.596	0.573	0.270	0.297	0.282	0.268	

Confident learning

Training on ImageNet cleaned with CL Improves ResNet Test Accuracy



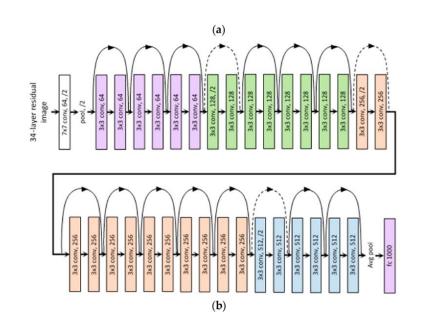
Model brainstorming



Initial architecture

1D resnet

~60% accuracy



Transfer learning with basecallers (DNA)

[Model((encoder): Serial((0): Convolution((conv): Conv1d(1, 4, kernel_size=(5,), stride=(1,), padding=(2,)) (activation): Swish() (1): Convolution((conv): Conv1d(4, 16, kernel size=(5,), stride=(1,), padding=(2,)) (activation): Swish() (2): Convolution((conv): Conv1d(16, 96, kernel size=(19,), stride=(5,), padding=(9,)) (activation): Swish() (3): Permute() (4): LSTM((rnn): LSTM(96, 96) (5): LSTM((rnn): LSTM(96, 96) (6): LSTM((rnn): LSTM(96, 96) (7): LSTM((rnn): LSTM(96, 96) (8): LSTM((rnn): LSTM(96, 96) (9): LinearCRFEncoder((linear): Linear(in features=96, out features=256, bias=True) (activation): Tanh()

```
Custom head
Training
```

Transfer learning with basecallers (DNA)

I R differences between modules LR warmup Accuracy ~72%

```
Input length (positives shorter)
```

```
(8): LSTM(
     (rnn): LSTM(96, 96)
   (9): LinearCRFEncoder(
     (linear): Linear(in features=96, out features=256, bias=True)
     (activation): Tanh()
), RNNPooler(
 (max pool): MaxPool1d(kernel size=200, stride=200, padding=0, dilation=1, ceil mode=False)
 (avg pool): AvgPool1d(kernel size=(200,), stride=(200,), padding=(0,))
 (flatten): Flatten(start dim=1, end dim=-1)
), Flatten(start_dim=1, end_dim=-1), Linear(in_features=960, out_features=100, bias=True), ReLU(), Linear(in_features=100, out_features=1, bias=True)]
```

6

Future

- Transformer + limited attention
- RNA basecaller
- Interpretability + basecalling info
- Learning with cleaned labels
- Speedup parallelization
- Experiment differences
- Use statistical modification methods
- Base-wise labeling

https://inno-forum.org/single-cell-rna-sequencing-technique-come-age/

https://www.labclinics.com/2018/11/08/role-dna-methylation-disease/?lang=en

https://www.yourgenome.org/facts/what-is-oxford-nanopore-technology-ont-sequenc ing/

