

Optical Character Recognition systems for Document Understanding

Mikuláš Bankovič 456421@mail.muni.cz

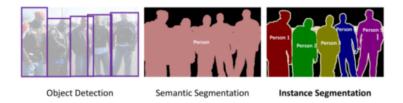
Faculty of Informatics, Masaryk University

October 10, 2022

Research sources

- A Survey of Deep Learning Approaches for OCR and Document Understanding [5]
- ICDAR 2019 Scanned Receipts OCR and Information Extraction (SROIE) [2]

Computer Vision problems



Source - Ref. 8

OCR pipeline

Figure 1 given by Subramani et al. [5] shows different approaches to OCR systems.

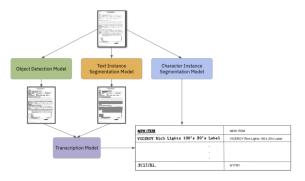


Figure: Object detection and segmentation need transcription(text recognition model)

Text Detection

- CRAFT based on CNN, specifically FCN [1]
- Differentiable Binarization Network (DBNet) [3]

Comparisons

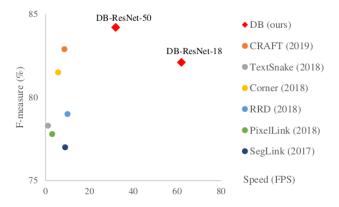


Figure: Speed and metric comparison

Text Recognition

- CRNN with different backbones (mobilenet, vgg)
- Master CNN + Transformer [4]

Master

Method	Input	Accuracy	Inference Time (ms)	Training Time (h)
SAR 8	48×160	91.5	16.1	51
MASTER (original)	48×160	95.0	9.2	36
MASTER (improved)	48×160	95.0	4.3	36

Figure: Speed comparison to previous SOTA

Master

- Connectionist Temporal Classification (CTC) loss
- does not require character-level annotations but word-level annotations
- high training parallelization compared to RNN

OCR frameworks

OCR systems allow users to use text detection and text recognition models without having to create own pipeline and visualization tools.

- EasyOCR many languages only a few models
- DocTR newer interface and better variety of models including selected ones

Both have poor documentation and are in their code infancy.

Figure: We do not want to reinvent the wheel

DocTR

- DBNet (pretrained text detection)
- Master (we want to train for our domain)

Figure: Doctr

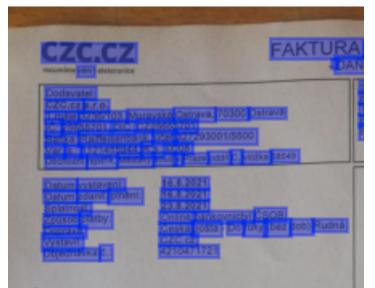
EasyOCR model

```
import torch.nn as nn
    from .modules import ResNet FeatureExtractor, BidirectionalLSTM
   class Model(nn.Module):
        def __init__(self, input_channel, output_channel, hidden_size, num_class):
            super(Model, self).__init__()
            """ FeatureExtraction """
            self.FeatureExtraction = ResNet_FeatureExtractor(input_channel, output_channel)
            self.FeatureExtraction_output = output_channel # int(imgH/16-1) * 512
            self.AdaptiveAvqPool = nn.AdaptiveAvqPool2d((None, 1)) # Transform final (imgH/16-1) -> 1
            """ Sequence modeling"""
            self.SequenceModeling = nn.Sequential(
                BidirectionalLSTM(self.FeatureExtraction output, hidden size, hidden size),
                BidirectionalLSTM(hidden size, hidden size, hidden size))
            self.SequenceModeling output = hidden size
            """ Prediction """
20
            self.Prediction = nn.Linear(self.SequenceModeling output, num class)
        def forward(self, input, text):
            """ Feature extraction stage """
            visual_feature = self.FeatureExtraction(input)
            visual_feature = self.AdaptiveAvgPool(visual_feature.permute(0, 3, 1, 2)) # [b, c, h, w] -> [b, w, c, h]
            visual_feature = visual_feature.squeeze(3)
            """ Sequence modeling stage """
38
            contextual feature = self.SequenceModeling(visual feature)
            """ Prediction stage """
            prediction = self.Prediction(contextual feature.contiguous())
            return prediction
```

Figure: Source code of so far unnamed model implemented by EasyOCR

Mikuláš Bankovič 456421@mail.muni.cz • Optical Character Recognition systems for Document Understanding • Octo

Invoice



Mikuláš Bankovič 456421@mail.muni.cz • Optical Character Recognition systems for Document Understanding • Octo

Reconstruction

FAKTURA CZC.CZ DA vàm Dodavate: CZC.czs.r.c 1.màj∈3236/103,Moravskà Ostrava70300 Ostrava IC 25655701 DIC: CZ25655701 Banka:Raiffeisenucet327293001/55 Vars.:1121455944K.s 0008 ObchoanrejstMéstsksoucVPrazeoddiC,vlozk,58549 Datum vystaven 16.8.2021 Datum zdanipinèr 16.8.202 23.8.202 Splatnos Onlinebankovnict CSOB Zpusobplat! Ceskàpost Do ruk (be:dob; Rudnà Doprava CZC.cz

4210471721

Vvsta

Objednavk ::

Born-Digital Dataset

- Scrape pdf invoices from the internet (provided for us)
- Process pdf files with python libraries (pdfminer, etc) to extract bounding boxes and texts
- Upload on HuggingFace Hub

Born-Digital Dataset

We have 699585 pairs cropped image: extracted text.

7.11.2018-8.11.2018

Figure: Example of born-digital cropped word. Custom model predicted: 7.1..2018.8.1..2018

Compare OCR on Born Digital dataset

OCR engine	Exact	Partial	No text	FPS
easyocr_generation2	0.88	0.89	0.00	56.13
easyocr_generation1	0.81	0.82	0.01	3.99
doctr_vgg16_bn*	0.78	0.78	0.00	18.93
doctr_mobilenet_v3_large*	0.77	0.78	0.00	40.70
doctr_mobilenet_v3_small*	0.77	0.77	0.00	51.36
tesseract	0.72	0.72	0.24	2.36
doctr master	0.82	0.82	Χ	Χ

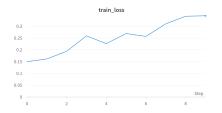
Table: Comparison of different recognition networks on born-digital dataset

1

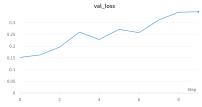
Mikuláš Bankovič 456421@mail.muni.cz • Optical Character Recognition systems for Document Understanding • Octo

^{1*}These are all CRNN architectures with different backbones

Training and validation loss



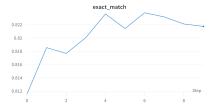
(a) Doctr custom model training loss



(b) Doctr custom model validation loss

Training and validation exact match

(a) Doctr custom model training exact match



(b) Doctr custom model validation exact match

Bibliography I

- [1] Youngmin Baek et al. Character Region Awareness for Text Detection. 2019. arXiv: 1904.01941 [cs.CV].
- [2] CDAR 2019 Robust Reading Challenge on Scanned Receipts OCR and Information Extraction. URL: https://rrc.cvc.uab.es/?ch=13&com=introduction (visited on 07/21/2022).
- [3] Minghui Liao et al. "Real-time Scene Text Detection with Differentiable Binarization". In: (). URL: http://arxiv.org/abs/1911.08947 (visited on 07/21/2022).

Bibliography II

- [4] Ning Lu et al. "MASTER: Multi-aspect non-local network for scene text recognition". In: (). DOI: 10.1016/j.patcog.2021.107980. URL: https: //doi.org/10.1016%5C%2Fj.patcog.2021.107980.
- [5] Nishant Subramani et al. "A Survey of Deep Learning Approaches for OCR and Document Understanding". In: (). URL: https://arxiv.org/abs/2011.13534 (visited on 07/21/2022).

1. We created Czech recognition dataset from inv	oices

3. We compared pretrained solution and evaluated our prototype

2. We trained prototype custom model architecture

MUNI

FACULTY OF INFORMATICS