MUNI FI

Single Image Super-Resolution

Author: Mikuláš Bankovič

Faculty of Informatics, Masaryk University

October 22, 2020

Introduction

Motivation

Why Super-Resolution (SR)? Link

Introduction

Motivation

Why SR? Link

Games

Introduction

Motivation

- Games
- Medical imaging

(a) Ground-truth

(b) SCSR[13]

(c) ResNet

(d) DGGRN

Introduction

Motivation

- Games
- Medical imaging
- Photography details

Introduction

Motivation

- Games
- Medical imaging
- Photography details
- Astronomy

Low-res image

Super resolved image

Introduction

Motivation

Why SR? Link

- Games
- Medical imaging
- Photography details
- Astronomy

Face and character recognition

Introduction

Motivation

- Games
- Medical imaging
- Photography details
- Astronomy
- Face and character recognition
- Project video699[3]

Introduction

Motivation

- Games
- Medical imaging
- Photography details
- Astronomy
- Face and character recognition
- Project video699[3]
- Super-scaling of FFFI movies

Metrics

The Peek Signal Noise Ratio (PSNR) (in dB) is defined as following:

$$PSNR = 10 imes \log_{10} \left(\frac{MAX_l^2}{MSE} \right),$$

where MAX_l is the maximum possible pixel value of the image. When the pixels are represented using 8 bits per sample, this is 255.

Metrics

The PSNR (in dB) is defined as following:

$$\textit{PSNR} = 10 imes \log_{10} \left(rac{\textit{MAX}_l^2}{\textit{MSE}}
ight),$$

where MAX_l is the maximum possible pixel value of the image. When the pixels are represented using 8 bits per sample, this is 255.

 SSIM - weighted combination of luminance, contrast and structure:

$$\mathsf{SSIM}(x,y) = \left[l(x,y)^{\alpha} \cdot c(x,y)^{\beta} \cdot s(x,y)^{\gamma} \right]$$

Metrics

The PSNR (in dB) is defined as following:

$$\textit{PSNR} = 10 imes \log_{10} \left(rac{\textit{MAX}_l^2}{\textit{MSE}}
ight),$$

where MAX_l is the maximum possible pixel value of the image. When the pixels are represented using 8 bits per sample, this is 255.

- SSIM weighted combination of luminance, contrast and structure:
- MOS mostly human opinions on 5 number scale

History of SR

Bilinear and bicubic interpolation:

- no prior knowledge about images
- no way to fine-tune to specific dataset
- does not improve with more data

Sparse-coding-based methods:

- The methods are part of example-based learning methods.
- They consist of a multiple-step pipeline:
 - 1. Crop overlapping patches and preprocess them (substract mean and normalize)
 - 2. Encode these patches by Low-Resolution (LR) dictionary
 - 3. Encoded coefficients are passed to the High-Resolution (HR) dictionary
 - 4. Overlapping HR patches are aggregated
- Focus on optimizing and improving dictionaries with mapping, while disregarding other steps.
- They often have to solve optimization problems on inference.

Super-Resolution Convolutional Neural Network (SRCNN)

- Given by Dong et al. [1], the Convolutional Neural Network (CNN) is equivalent to the previous pipeline.
- That brings multiple advantages:
 - The inference consists only from feed-forward pass.
 - The pipeline is unified, therefore, each step is optimized during training.
 - The dictionaries are not explicitly formed, but included in the weights.
 - Provides superior quality and speed performance (Next slides).

- SRCNN is a simple CNN with three convolutional layers.
- The input image is firstly upscaled using bicubic interpolation.
- The next step is feed-forward pass through the network.
- The different architecture involved changes in filter size: 9-1-5, 9-5-5, 11-5-7, etc.

SRCNN

SRCNN

Fig. 3. An illustration of sparse-coding-based methods in the view of a convolutional neural network.

SRCNN

SC / 25.58 dB

Bicubic / 24.04 dB

SRCNN / 27.95 dB

SRCNN

Problems

- The bicubic interpolation is an expensive operation that often introduce side-effects as blurring or noise amplification.
- More data could overfit the network, because its smaller size.
- Most of the operations are performed in an expensive HR space.

The main differences between SRCNN and Fast Super-Resolution Convolutional Neural Network (FSRCNN):

- There is no pre-processing or upsampling at the beginning. The feature extraction took place in the LR space.
- A 1 × 1 convolution is used after the initial 5 × 5 convolution to reduce the number of channels, and hence lesser computation and memory, similar to how the Inception[4] network is developed.
- Multiple 3 × 3 convolutions are used, instead of having a big convolutional filter, similar to how the VGG network works by simplifying the architecture to reduce the number of parameters.
- Upsampling is done by using a learnt transposed convolution, thus improving the model.

- 17.36 times faster than SRCNN and can run in real time (24 fps) with a generic CPU.
- All layers except from the last can be shared with multiple upscaling factors.
- Transposed convolution LINK[2]
- Transposed convolution with stride LINK[2]

FSRCNN

FSRCNN

Mikuláš Bankovič • Single Image Super-Resolution • October 22, 2020

10/24

- SRCNN-Ex / 27.95 dB

FSRCNN / 28.68 dB

ESPCN

- Efficient Sub-Pixel Convolutional Neural network (ESPCN) introduces the concept of sub-pixel convolution to replace the transposed convolution layer for upsampling. This solves two problems associated with it:
 - 1. Transposed convolution happens in the high resolution space, and thus is more computationally expensive.
 - 2. It resolves the checkerboard issue in deconvolution, which occurs due to the overlap operation of convolution.

ESPCN

Sub-pixel convolutional layers

- In the recent literature they are called pixel-shuffle or depth-to-space layers.
- Pixels from multiple channels in a low resolution image are rearranged to a single channel in a high resolution image.

Figure 1. The proposed efficient sub-pixel convolutional neural network (ESPCN), with two convolution layers for feature maps extraction, and a sub-pixel convolution layer that aggregates the feature maps from LR space and builds the SR image in a single step.

Sub-pixel convolutional layers

- In the recent literature they are called pixel-shuffle or depth-to-space layers.
- Pixels from multiple channels in a low resolution image are rearranged to a single channel in a high resolution image.

Sub-pixel convolution layer

ESPCN

Figure: Lancsoz (left) vs ESPCN (right)

Mikuláš Bankovič • Single Image Super-Resolution • October 22, 2020

Super-Resolution Generative Adversarial Network (SRGAN)

- Problem: All previous methods were train on MSE loss function. However, ideal MSE image is not offhand the most photo-realistic
- Solution: Generative Adversarial Network (GAN)

SRGAN

Figure 2: From left to right: bicubic interpolation, deep residual network optimized for MSE, deep residual generative adversarial network optimized for a loss more sensitive to human perception, original HR image. Corresponding PSNR and SSIM are shown in brackets. [$4 \times$ upscaling]

- Problem: All previous methods were train on MSE loss function. However, ideal MSE image is not offhand the most photo-realistic
- Solution: GAN
- Problem: As in other computer vision disciplines, deeper models are more successful, however, harder to train due to some aspects, such as vanishing gradient problem.
- Solution: ResNet

ResNet

Hard to get F(x)=x and make y=x an identity mapping

Easy to get F(x)=0 and make y=x an identity mapping

GAN

Discriminator Network

- This paper generates State Of The Art (SOTA) results on upsampling (4x) as measured by PSNR and SSIM with 16 block deep SRResNet network optimized for MSE.
- The authors proposed a new SRGAN in which the authors replace the MSE based content loss with the loss calculated on VGG layers.
- SRGAN was able to generate SOTA results which the author validated with extensive MOS test on three public benchmark datasets.
- Use 2 losses for generator network: MSE and function based on the euclidean distance between feature maps extracted from the VGG19 network.

Loss

$$l_{MSE}^{SR} = \frac{1}{r^{2}WH} \sum_{x=1}^{rW} \sum_{y=1}^{rH} (I_{x,y}^{HR} - G_{\theta_{G}}(I^{LR})_{x,y})^{2}$$

$$\begin{split} l_{VGG/i,j}^{SR} &= \frac{1}{W_{i,j}H_{i,j}} \sum_{x=1}^{W_{i,j}} \sum_{y=1}^{H_{i,j}} (\phi_{i,j}(I^{HR})_{x,y} \\ &- \phi_{i,j}(G_{\theta_G}(I^{LR}))_{x,y})^2 \end{split}$$

$$l_{Gen}^{SR} = \sum_{n=1}^{N} -\log D_{\theta_D}(G_{\theta_G}(I^{LR}))$$

$$l^{SR} = \underbrace{l_{\rm X}^{SR}}_{\rm content \ loss} + \underbrace{10^{-3} l_{Gen}^{SR}}_{\rm adversarial \ loss}$$

perceptual loss (for VGG based content losses)

Mikuláš Bankovič • Single Image Super-Resolution • October 22, 2020

Loss

Figure 6: SRResNet (left: a,b), SRGAN-MSE (middle left: c,d), SRGAN-VGG2.2 (middle: e,f) and SRGAN-VGG54 (middle right: g,h) reconstruction results and corresponding reference HR image (right: i,j). [4× upscaling]

Loss

Loss

Set5	nearest	bicubic	SRCNN	SelfExSR	DRCN	ESPCN	SRResNet	SRGAN	HR
PSNR	26.26	28.43	30.07	30.33	31.52	30.76	32.05	29.40	∞
SSIM	0.7552	0.8211	0.8627	0.872	0.8938	0.8784	0.9019	0.8472	1
MOS	1.28	1.97	2.57	2.65	3.26	2.89	3.37	3.58	4.32
Set14									
PSNR	24.64	25.99	27.18	27.45	28.02	27.66	28.49	26.02	∞
SSIM	0.7100	0.7486	0.7861	0.7972	0.8074	0.8004	0.8184	0.7397	1
MOS	1.20	1.80	2.26	2.34	2.84	2.52	2.98	3.72	4.32
BSD100									
PSNR	25.02	25.94	26.68	26.83	27.21	27.02	27.58	25.16	∞
SSIM	0.6606	0.6935	0.7291	0.7387	0.7493	0.7442	0.7620	0.6688	1
MOS	1.11	1.47	1.87	1.89	2.12	2.01	2.29	3.56	4.46

Problems

- Expensive training
- A little bit less expensive inference

Future

- Residual networks?
- Attention-based networks?
- GANs?
- Progressive Reconstruction Networks?

Future

TABLE 2 Super-resolution methodology employed by some representative models. The "Fw", "Up.", "Rec.", "Res.", "Dense.", "Att." represent SR frameworks, upsampling methods, recursive learning, residual learning, dense connections, attention mechanism, respectively.

Method	Publication	Fw.	Up.	Rec.	Res.	Dense	Att.	\mathcal{L}_{L1}	\mathcal{L}_{L2}	Keywords
SRCNN 22	2014, ECCV	Pre.	Bicubic						1	
DRCN 82	2016, CVPR	Pre.	Bicubic	1	1				1	Recursive layers
FSRCNN 43	2016, ECCV	Post.	Deconv						1	Lightweight design
ESPCN [156]	2017, CVPR	Pre.	Sub-Pixel						1	Sub-pixel
LapSRN 27	2017, CVPR	Pro.	Bicubic		1			1		\mathcal{L}_{pixel_Cha}
DRRN 56	2017, CVPR	Pre.	Bicubic	1	1				1	Recursive blocks
SRResNet [25]	2017, CVPR	Post.	Sub-Pixel		1				1	$\mathcal{L}_{Con.}, \mathcal{L}_{TV}$
SRGAN [25]	2017, CVPR	Post.	Sub-Pixel		1					$\mathcal{L}_{Con.}, \mathcal{L}_{GAN}$
EDSR 31	2017, CVPRW	Post.	Sub-Pixel		1			1		Compact and large-size design
EnhanceNet 8	2017, ICCV	Pre.	Bicubic		1					$\mathcal{L}_{Con.}$, \mathcal{L}_{GAN} , $\mathcal{L}_{texture}$
MemNet 55	2017, ICCV	Pre.	Bicubic	1	1	1			1	Memory block
SRDenseNet [79]	2017, ICCV	Post.	Deconv		1	1			1	Dense connections
DBPN [57]	2018, CVPR	Iter.	Deconv		1	1			1	Back-projection
DSRN 85	2018, CVPR	Pre.	Deconv	1	1				1	Dual state
RDN 93	2018, CVPR	Post.	Sub-Pixel		1	1		1		Residual dense block
CARN 28	2018, ECCV	Post.	Sub-Pixel	1	1	1		1		Cascading
MSRN 99	2018, ECCV	Post.	Sub-Pixel		1			1		Multi-path
RCAN 70	2018, ECCV	Post.	Sub-Pixel		1		1	1		Channel attention
ESRGAN 103	2018, ECCVW	Post.	Sub-Pixel		1	1		1		$\mathcal{L}_{Con.}, \mathcal{L}_{GAN}$
RNAN 106	2019, ICLR	Post.	Sub-Pixel		1		1	1		Non-local attention
Meta-RDN 95	2019, CVPR	Post.	Meta Upscale		1	1		1		Magnification-arbitrary
SAN 105	2019, CVPR	Post.	Sub-Pixel		1		1	1		Second-order attention
SRFBN [86]	2019, CVPR	Post.	Deconv	1	1	1		1		Feedback mechanism

Mikuláš Bankovič • Single Image Super-Resolution • October 22, 2020

1.14

Thank You for Your Attention!

Bibliography

Bibliography I

- Chao Dong et al. "Image Super-Resolution Using Deep Convolutional Networks". In: (). URL: http://arxiv.org/abs/1501.00092 (visited on 10/05/2020).
- [2] Vincent Dumoulin and Francesco Visin. A guide to convolution arithmetic for deep learning. 2018. URL: https://arxiv.org/abs/1603.07285v2 (visited on 10/20/2020).
- [3] Vít Novotný. video699. Automatic alignment of lecture recordings with study materials. 2018. URL: https://github.com/video699 (visited on 01/10/2020).

Bibliography

Bibliography II

[4] Christian Szegedy et al. "Rethinking the Inception Architecture for Computer Vision". In: (2015). URL: http://arxiv.org/abs/1512.00567 (visited on 10/20/2020).

Acronyms

CNN Convolutional Neural Network. 14–20

- ESPCN Efficient Sub-Pixel Convolutional Neural network. 27, 30
- FSRCNN Fast Super-Resolution Convolutional Neural Network. 22–26
 - GAN Generative Adversarial Network. 31–33
 - HR High-Resolution. 13, 21
 - LR Low-Resolution. 13, 22
 - MOS Mean Opinion Score. 10–12, 36
 - PSNR Peek Signal Noise Ratio. 10–12, 36
 - SOTA State Of The Art. 36
 - SR Super-Resolution. 2–9, 13

Mikuláš Bankovič • Single Image Super-Resolution • October 22, 2020

Bibliography

SRCNN Super-Resolution Convolutional Neural Network. 14–20, 22, 23

SRGAN Super-Resolution Generative Adversarial Network. 31–33, 36

SSIM Structural Similarity Index Measure. 10–12, 36

MUNI FACULTY OF INFORMATICS