
Web Development
Frameworks

PV219, spring 2024



Agenda

• What is a Web Development Framework (WDF)

• Benefits of using WDF

• Classification of WDF Architectures

• Types of WDF

• Difference between Front-End and Back-End WDF 

• Front-End Frameworks

• Back-End Frameworks

• How to choose WDF



What is a WDF

Framework is a pre-established collection of 
software tools, libraries, and guidelines created 
to expedite and streamline the process of web 
application development.

Using a framework can assist in ensuring that 
the finished product is scalable, reliable, and 
maintainable due to the standardized approach 
to development it offers.



Benefits of using Frameworks

• Speed and Efficiency: It allows developers to build 
applications faster and with less code.

• Consistency and Modularity: Easy to maintain and 
scale applications over time.

• Security: Includes built-in security features that help to 
protect against threats.

• Community Support: Supports large communities of 
developers who provide support and resources.

• Scalability: Allows scaling of applications as they grow 
in size and complexity.

• Testing and Debugging: Offers various tools and 
features to make testing and debugging easier



Classification of Architectures

Architecture defines the structure and 
organization of the application and how 
different components interact with each other.

• Model-View-Controller (MVC)

• Model-View-ViewModel (MVVM)

• Three-Tier Architecture (PAD)



Model-View-Controller (MVC)

The model represents the data, the view 
represents the user interface, and the controller 
handles user input and business logic. 

Usage: Ruby on Rails, Laravel, Spring, Django, 
ASP.NET



Model-View-ViewModel (MVVM)

Model-View-Controller (MVC) architecture but 
with some key differences. The view-model 
manages the communication between the 
model and the view.

Usage: AngularJS, Vue.js, Knockout.js, React



Three-Tier Architecture (PDA)

Also known as Multi-Tier Architecture, separates 
the application into three main tiers.

The presentation tier handles the user interface, 
the application tier handles the business logic, 
and the database tier handles data storage and 
retrieval.

Usage: CakePHP, Express.js, Ember.js, Backbone.js



Types of WDF (1/2)

Front-end frameworks are focused on the 
presentation layer of a web application and are 
responsible for rendering the user interface. 

Some popular front-end frameworks include 
AngularJS, React, and Vue.js.



Types of WDF (2/2)

Back-end frameworks are focused on an 
application’s server-side functionality. They 
provide the tools and structure necessary to build 
the application’s backend, including database 
interaction, server-side rendering, and API 
development. 

Some popular back-end frameworks include Ruby 
on Rails, Django, and Express.



Difference between FE and BE

Front-end provides pre-written tools and libraries for 
building interactive and responsive user interfaces like 
buttons, forms, and data visualization components.

Typically use a variety of programming languages, such 
as HTML, CSS, and JavaScript.

Handle tasks such as data binding, state management, 
and routing within the user's browser.



Difference between FE and BE

Back-end provides pre-written tools and libraries for 
building scalable and secure server-side applications, 
such as routing, authentication, and database 
integration.

Typically use a variety of programming languages, 
such as Ruby, PHP, Python, Java.

Handle tasks such as authentication, database 
interaction, and security within the server.



Front-End: React

Although it’s more like a library, developers still 
consider React one of the best and first web development 
frameworks developed by Facebook to adopt a 
component-based architecture.

https://reactjs.org/


Front-End: React

Benefits:

• Bringing HTML into your JavaScript helps developers write 
code quickly.

• Allows you to break down complex UI into smaller 
components and start developing the same.

• Virtual DOM helps React know when to re-render and ignore 
certain pieces of the DOM, thus increasing the page’s 
performance.

• Due to the presence of many handy tools, when used as 
Chrome extensions, it allows developers to inspect and 
debug the DOM quickly.



Front-End: React

Drawbacks:

• Although it’s rapidly growing, community space is smaller 
than others.

• Continuous upgradation in technology has become 
troublesome for developers in terms of making proper 
documentation.



Front-End: Angular

Angular is a web development framework for building 
dynamic single-page web applications (SPAs) for mobile, 
desktop, and web. It’s led by Google’s Angular Team and 
supported by a large community of developers.

https://angular.io/


Front-End: Angular

Benefits:

• Well-detailed documentation that keeps updated in a timely 
manner by Google.

• Allows various third-party integrations that improve the 
overall functionality of websites.

• Allow dependency injection to execute several functions at a 
time.

• Provides faster loading time.



Front-End: Angular

Drawbacks:

• Have a steep learning curve.

• Requires a lot of boilerplate code that makes it complex 
during installation.



Front-End: Vue.js

Vue.js is one of the progressive JavaScript 
frameworks allowing developers to build desktop and 
mobile apps and web interfaces. Developed in 2013, but 
still ranked among the third web development frameworks.

https://vuejs.org/


Front-End: Vue.js

Benefits:

• With a minified jQuery library, the compressed Vue.js weighs 
around 29 KB.

• Simple and easy to grasp.

• Offers extensive documentation, which makes it easier to 
learn.

• Can easily handle 2-way data binding, thus making the code 
reactive.



Front-End: Vue.js

Drawbacks:

• Being flexible, but while working on large-scale projects with 
multiple developers, flexibility can lead to complexity.

• Smaller community and lacks widespread support.



Front-End: Svelte

Svelte is a modern framework that allow developers to use 
its clear-to-read HTML templating. The approach to 
reactive programming is also unique, allowing for a more 
intuitive and efficient way of building reactive UI 
components.

https://svelte.dev/


Front-End: Svelte

Benefits:

• Learning curve is relatively straightforward.

• Allows better performance due to the server-side rendering 
mode.

• Offers robust and good-looking APIs.

• Optimizes code during compilation; thus, overhead runtime 
reduces.



Front-End: Svelte

Drawbacks:

• The architecture of compilers moves complexity from source 
code and run time to tools and build time.

• Not suitable for large projects.



Front-End: jQuery

jQuery is a JavaScript library-based framework that makes 
adding dynamic and interactive elements to web pages 
more accessible. Released in 2006 and has become one of 
the most widely used JavaScript libraries on the web. 

https://jquery.com/


Front-End: jQuery

Benefits:

• With its simple syntax and a wide range of built-in methods 
makes it easy for developers to add dynamic behavior to web 
pages.

• The library’s API is designed to be intuitive and 
straightforward, making it easier for developers to get 
started and make progress quickly.

• It has a wide range of plugins and extensions that can add 
additional functionality to web applications.



Front-End: jQuery

Drawbacks:

• jQuery is a JavaScript library, meaning its functionality 
depends on JavaScript being enabled in the user’s browser. If 
JavaScript is disabled, the dynamic behavior provided by 
jQuery will not be available, and the user experience may be 
degraded.

• It can be complex in some cases, particularly for developers 
new to the library.



Front-End: Backbone.js

Backbone.js is a lightweight front-end web development 
framework designed to provide structure to web 
applications. It is based on the Model-View-Controller 
(MVC) architecture pattern and allows developers to build 
dynamic and responsive user interfaces easily.

https://backbonejs.org/


Front-End: Backbone.js

Benefits:

• Provides a structured way of organizing code and helps to 
separate concerns between data models, views, and 
controllers.

• It is a lightweight framework.

• Flexible, i.e., it allows developers to choose which 
components to use and how to use them. 

• Compatible with different platforms, including desktop and 
mobile.

• Has a large and active community of developers who 
contribute to its development and provide support.



Front-End: Backbone.js

Drawbacks:

• While it is a lightweight framework, Backbone.js has a steep 
learning curve for beginners due to its complex architecture.

• Provides only basic functionalities; additional libraries may be 
required to add more features.

• It requires writing a lot of boilerplate code, which can be 
time-consuming.

• Lack of opinionated design can lead to inconsistency and 
confusion among developers.



Back-End: Node.js

Node.js is an open-source, cross-platform JavaScript 
runtime environment that allows you to run JavaScript 
code outside of a web browser. In simpler terms, it lets you 
use JavaScript to build server-side applications and t

https://nodejs.org/en


Back-End: Node.js

Benefits:

• JavaScript’s familiarity and the availability of pre-built 
packages can speed up development.

• Excels at handling many concurrent connections due to its 
event-driven architecture. It’s suitable scalable web apps.

• Well-suited for building real-time applications that require 
constant two-way communication between server and client.

• With the rise of JavaScript frameworks like React or Angular, 
Node.js allows developers to use JavaScript for both front-
end and back-end development, creating a more unified 
development experience.



Back-End: Node.js

Drawbacks:

• Not the best choice for applications that involve complex 
calculations or heavy data processing. It is single-threaded, 
slowing down the entire event loop and impacting 
responsiveness.

• Compared to some mature back-end languages, the built-in 
standard library is relatively limited. This is mitigated by the 
vast ecosystem of third-party packages available through 
npm (Node Package Manager).

• While Node.js is under active development, there have been 
some changes to its API in the past. These changes can 
require developers to adapt their code to newer versions.



Back-End: Express.js

Express.js is a framework for Node.js that includes a 
powerful routing system, which enables developers to 
create complex routes. It also includes a wide range of 
middleware allowing add authentication, logging, and error 
handling.

https://expressjs.com/


Back-End: Express.js

Benefits:

• One can define the routes of a preexisting app with the help 
of URL and HTTP.

• Static files and resources are easy to serve.

• A very advanced feature is creating a REST API server.

• Connected with MongoDB, Redis as well as MySQL.

• When used with Node.js, both frameworks can support 
multiple concurrent actions.

• With an open-sourced community, the code constantly gets 
reviewed and improved. And whenever you are stuck, you 
will get help from the other community users.



Back-End: Express.js

Drawbacks:

• When a developer is migrating from any different 
programming language, the event-driven nature of Express.js 
can be a little complex to comprehend.

• If you plan to develop a mobile app with Express.js, you must 
get familiar with the concept of middleware.

• The framework is perfect for medium and minor projects. If 
you aim to create a large project, a middleware framework 
like Express.js should not be made your choice.



Back-End: Django

Django is a Python-based Model-View-Template 
framework. It adheres to the Convention Over 
Configuration pattern and the DRY pattern. Main focus of 
the framework is on enablement of the secure websites 
creation.

https://www.djangoproject.com/


Back-End: Django

Benefits:

• Offers the best documentation, available in multiple langs.

• There is no need for prior experience in the backend to build 
a fully functional website. It runs multiple files 
simultaneously without requiring the development of 
separate server files for database design.

• It provides flexibility through pluggable apps, through which 
third-party applications can be quickly plugged.

• Provides high security by default, closing loopholes 
previously left open for the backend developer to complete.



Back-End: Django

Drawbacks:

• Not supported for highly scalable applications.

• Django has a steep learning curve.

• Monolithic framework, i.e., has a limited number of 
dependencies, which makes it difficult to use.



Back-End: Ruby on Rails

Ruby on Rails, often simply called Rails, is an open-source 
framework. It emphasizes convention over configuration 
and follows the Model-View-Controller (MVC) architectural 
pattern. Also includes database migrations, RESTful 
routing, and scaffolding.

https://rubyonrails.org/


Back-End: Ruby on Rails

Benefits:

• Allows a rapid development, providing tools and abstractions, 
reducing effort required to build a functional application.

• Rails is designed to promote “convention over configuration”, 
meaning that it follows established conventions and best 
practices, without having to configure every aspect of the 
application from scratch.

• Offers a rich ecosystem of gems and plugins that can be used 
to add additional functionality to web applications.

• Highly scalable, making it a good choice for web applications 
that handle large amounts of traffic and data.



Back-End: Ruby on Rails

Drawbacks:

• The functionality depends on Ruby being installed on the 
server. It makes it more difficult to deploy Rails applications, 
particularly in environments where Ruby is not widely used 
or supported.

• Rails provides a full-stack framework, which includes 
components for both the front-end and back-end of the 
application. It can be a drawback for some developers, who 
may prefer to have more control over the different 
components of the application.



Back-End: Laravel

Laravel is a popular open-source PHP framework. It has a 
robust ecosystem of packages and tools, which makes it 
easy for developers to extend its features and functionality.

https://laravel.com/


Back-End: Laravel

Benefits:

• Offers an easy-to-use command-line interface that makes it 
simple to perform common tasks, such as generating code 
and running database migrations.

• Offers a templating engine called Blade that makes creating 
and managing templates for your application easy.

• It includes an Object-Relational Mapping (ORM) tool called 
Eloquent, making it easy to interact with databases and 
perform database operations.

• It provides a simple and flexible routing system that makes it 
easy to define the URLs for your application.



Back-End: Laravel

Drawbacks:

• Relies heavily on third-party packages and extensions to 
provide additional functionality.

• Frequent releases of new versions make its support limited.

• Works on complex architecture difficult for developers to 
understand, especially those new to the framework.



Back-End: Spring

Spring is an open-source framework for building 
enterprise-level Java applications. It covers dependency 
injection, data access, and a modular design, making it an 
ideal choice for building scalable, robust, and maintainable 
applications.

https://spring.io/


Back-End: Spring

Benefits:

• An IoC container is responsible for managing the lifecycle of 
the application components. It makes it easy to build loosely 
coupled applications and reduces boilerplate code.

• Uses a Model-View-Controller (MVC) architecture.

• Spring provides a suite of tools for testing application, 
including support for unit testing, integration testing, and 
functional testing.

• It includes a comprehensive security framework that makes it 
easy to implement authentication, authorization, and other 
security features for your application.



Back-End: Spring

Drawbacks:

• Large and complex, and it can be challenging for developers 
to understand all its features and components.

• Relies heavily on third-party libraries and components, 
making it difficult to keep track of all the dependencies and 
ensure compatibility between different versions.

• It has a large memory footprint, which can be problematic 
for applications running on resource-constrained 
environments.



Check While Choosing a WDF

Choosing the right web development framework can have a 
significant impact on the success of your project. Consider:

• Ease of Installation and Maintenance

• Documentation and Support

• Licensing

• Scalability and Flexibility

• Cost and Budget

• Learning Curve

• Customization and Extensibility


	Slide 1: Web Development  Frameworks
	Slide 2: Agenda
	Slide 3: What is a WDF
	Slide 4: Benefits of using Frameworks
	Slide 5: Classification of Architectures
	Slide 6: Model-View-Controller (MVC)
	Slide 7: Model-View-ViewModel (MVVM)
	Slide 8: Three-Tier Architecture (PDA)
	Slide 9: Types of WDF (1/2)
	Slide 10: Types of WDF (2/2)
	Slide 11: Difference between FE and BE
	Slide 12: Difference between FE and BE
	Slide 13: Front-End: React
	Slide 14: Front-End: React
	Slide 15: Front-End: React
	Slide 16: Front-End: Angular
	Slide 17: Front-End: Angular
	Slide 18: Front-End: Angular
	Slide 19: Front-End: Vue.js
	Slide 20: Front-End: Vue.js
	Slide 21: Front-End: Vue.js
	Slide 22: Front-End: Svelte
	Slide 23: Front-End: Svelte
	Slide 24: Front-End: Svelte
	Slide 25: Front-End: jQuery
	Slide 26: Front-End: jQuery
	Slide 27: Front-End: jQuery
	Slide 28: Front-End: Backbone.js
	Slide 29: Front-End: Backbone.js
	Slide 30: Front-End: Backbone.js
	Slide 31: Back-End: Node.js
	Slide 32: Back-End: Node.js
	Slide 33: Back-End: Node.js
	Slide 34: Back-End: Express.js
	Slide 35: Back-End: Express.js
	Slide 36: Back-End: Express.js
	Slide 37: Back-End: Django
	Slide 38: Back-End: Django
	Slide 39: Back-End: Django
	Slide 40: Back-End: Ruby on Rails
	Slide 41: Back-End: Ruby on Rails
	Slide 42: Back-End: Ruby on Rails
	Slide 43: Back-End: Laravel
	Slide 44: Back-End: Laravel
	Slide 45: Back-End: Laravel
	Slide 46: Back-End: Spring
	Slide 47: Back-End: Spring
	Slide 48: Back-End: Spring
	Slide 49: Check While Choosing a WDF

