

Model-based Approach for Building Trust in Autonomous Systems

Danish Iqbal

Motivation (Autonomous Ecosystem)

– Multiple, Heterogenous Machines:

- Varied agent attributes: size, power, mobility, sensing, computing.
- Task allocation based on individual agent capabilities and system goals.

– Connected (wirelessly):

Facilitates coordination and data sharing between agents.

Self-Organizing:

- Can adapt independently to environmental changes.
- Self-organizing ability complements higher-level system directives

What is Trust?

Literature Timeline

Evolution of Autonomous

Literature search results categorized into automation, automotive and robotics, A view of smart city digital ecosystem

Why do we need Trust?

Study context chosen for trust research and how they distributed yearly.

[1] Raats, et al. "Trusting autonomous vehicles: An interdisciplinary approach." Transportation Research Interdisciplinary Perspectives 7 (2020): 100201.

Problem Definition

Research Challenges in Autonomous Ecosystem

 Dynamic and Unpredictable Environments

 Emergent Behavior (Acquired Knowledge)

 Insufficient Verification and Validation Methods

Lack of Trust Between Systems,
 Operators, and Networks

Dynamic Safety Analysis

Problem Definition

The "what"

- Goal: Model-based trust assessment in autonomous vehicular ecosystems
- Research questions:
 - 1) How can autonomous agents use model-based approaches to dynamically evaluate the trustworthiness of other agents within their ecosystems in real time?
 - Objective: Develop a model-based system enabling autonomous agents to dynamically and real-time
 assess the trustworthiness of collaborating agents in autonomous ecosystem.
 - 2) How can a model-based approach identify and react to changes in the behavior of autonomous agents during runtime, especially regarding potential malicious intent?
 - Objective: For autonomous systems, in particular, it becomes challenging to dynamically evaluate the predicted behavior of the autonomous agent.

Aims of the Research

Chosen Goals

- [O1] Modelling approach supporting trust in autonomous vehicular ecosystems
- [O2] Dynamic safety properties to be reflected in the model to mitigate collision risks
- [O3] Reflection of dynamicity and unpredictability of the environment in which the agents operate
- [O4] Runtime trust-assessment approach based on the model (covered by O1 and O2) and the context of the ecosystem (reflecting O3).

Proposed Solution

The "how"

- Explore the modeling and assessment technique that supports trust
 - Model-based trust-assessment approach
- Primary research objectives:
 - Modelling approach supporting trust:
 - Modeling Trust Assurance in Ecosystems

2. Dynamic safety properties

- Dynamic safety analysis of collaborating autonomous agents
- Dynamicity is difficult to achieve trust

Proposed solutions

The concept of Digital Twin (DT)

- Role of DTs in supporting runtime evaluation of autonomous agents
- Design a model that allows autonomous systems to share their declared behavior in the form of a Digital Twin, which is used for trust evaluation in dynamic environments

Safety mechanism integration

- Trust assessment through DT provided by collaborators
- Checking of actual and declared behaviour

Proposed Solution

The "how"

- Explore the modeling and assessment technique that supports trust
 - Model-based trust-assessment approach

Proposed solution

Elements of the Proposed Solution

Research contributions

- Concept of Digital Twin (DT) and trust assessment (runtime verification)
- Introduce a modeling and assessment technique that supports trust-building in autonomous vehicular ecosystem.
- Suggest runtime verification method that facilitates trust assessment through information exchange, utilizing a Digital Twin and conducting real-time assessments of this Digital Twin.

Proposed Solution

The "how"

- Explore the modeling and assessment technique that supports trust
 - Safety mechanism integration

Proposed solution

Trust Modeling through Digital Twin

Research contributions

- Safety-based trust-building method
- This is done to reflect two major social metrics relevant to trust building, which are:
- 1) Honesty (consistency between the declared and actual behaviour)
- 2) Openness (transparency about the intended behaviour).

Achieved results

Model-based Approach for Building Trust:

- The first version of envisioned approach to model-based trust assurance in autonomous vehicle ecosystems, contributing to O4, along with the first Digital Twin model, contributing to O1, has been published in [1].
- [1] Model-based Approach for Building Trust in Autonomous Drones through Digital Twins IQBAL, Danish; BUHNOVA, Barbora. (SMC). 2022. | (CORE Rank: A)

Drone 1 Decision to Trust Drone 2

Achieved results

Trust Building through Dynamic Safety Evaluation:

- Introduced a dynamic trust assessment approach for collaborative autonomous systems.
- Approach incorporates dynamic safety assurance to contribute to Objective O2.
- Utilizes Digital Twins for real-time data exchange.

Framework for Identification of Hazard, Unsafe Control Action and Casual Factors.

 [2] Digital Twins for Trust Building in Autonomous Drones through Dynamic Safety Evaluation IQBAL, Danish; BUHNOVA, Barbora; CIOROAICA, Emilia. 2023 | Enase (CORE Rank: B)

Conclusion

- Examined the role of Digital Twins in the trust-building process.
- Integration of safety mechanism and run-time compliance checking.
- Direct and indirect trust on the practical use case.
- Finally, we presented the trust/not trust example for collision avoidance.
- In the future, we plan to improve the current design of the Digital Twin by including more detailed behavior,
 presenting an enhanced model.
- we plan to employ the trust assessment to validate the model with more attributes and scenarios.

