

Statistical complexity of software systems represented as multi-layer networks

Jan Žižka, jzi@mail.muni.cz

Faculty of Informatics, Masaryk University, Brno, Czech Republic

April 4, 2024

Motivation

Can we measure a complexity of a Software System?

- To compare software systems
- To analyze change of properties on complexity
- To predict emergent behaviors
- To design complex software systems

¹ https://www.nature.com/articles/s41586-021-03819-2, https://www.youtube.com/watch?v=WXuK6gekU1Y, https://paperswithcode.com/method/gpt

Intuitive notion of magnitude of "complexity"

Intuitive notion of magnitude of "complexity"

² Sketch of the intuitive notion of the magnitudes of "information" (H) and "disequilibrium" (Q) for the physical systems and the behavior intuitively required for the magnitude of "complexity." The quantity SCM = H·Q is proposed to measure such a magnitude. [LopezRui1995]

Statistical Complexity Measure

Statistical Complexity Measure

Statistical Complexity Measure (SCM)

$$SCM = H \cdot Q$$
 (1)

Shannon entropy

$$H = -\sum_i p_i \log(p_i)$$

The disequilibrium, using Jensen-Shannon divergence

$$Q = JSD(P||R) \tag{3}$$

(2)

Statistical Complexity Measure

Jensen-Shannon Divergence

Jensen-Shannon divergence

$$JSD(P||R) = \frac{1}{2}D(P||M) + \frac{1}{2}D(R||M)$$
(4)

Kullback-Leibler divergence

$$D(P||M) = \sum_{i} p_{i} \log\left(\frac{p_{i}}{m_{i}}\right)$$
(5)
$$D(R||M) = \sum_{i} r_{i} \log\left(\frac{r_{i}}{m_{i}}\right)$$
(6)

Layered system

Layered system

Model design

- Number of components: 128, 256, 512, 1024
- Number of layers: 1, 2, 4, 8, 16, 32, 64
- Simulation time: 10, 100, 200, 500 seconds
- Uniformly distributed communication between components on layer
- Ordered communication between layers
- Implemented using OMNet++ Systems

Dimensionality of a multi-layer network

Dimensionality of a multi-layer network

³Sketch of the intuitive notion of the magnitudes of "information" (H) and "disequilibrium" (Q) for the physical systems and the behavior intuitively required for the magnitude of "complexity." The quantity SCM = H·Q is proposed to measure such a magnitude. [LopezRui1995]

System configuration dimensionality

System configuration dimensionality

Configuration	Dimension	Abbreviation
Ordered	1 (2 ⁰)	Or
64 Layers	$2(2^{1})$	L64
32 Layers	4 (2 ²)	L32
16 Layers	8 (2 ³)	L16
8 Layers	16 (2 ⁴)	L8
4 Layers	32 (2 ⁵)	L4
2 Layers	64 (2 ⁶)	L2
Chaotic	128 (2 ⁷)	Ch

Statistical complexity of simulated systems

Statistical complexity of simulated systems

Normalized statistical complexity of simulated systems

Normalized statistical complexity of simulated systems

System with maximum SCM

System with maximum SCM

System with maximum SCM

Normalized simulation results for t=500s

		128			256			512			1024	
	\overline{H}	\overline{Q}	SCM									
Or	0.000	1.000	0.000	0.000	1.000	0.000	0.000	1.000	0.000	0.000	1.000	0.000
L64	0.072	0.987	0.170	0.206	0.969	0.439	0.309	0.957	0.610	0.391	0.950	0.727
L32	0.235	0.946	0.534	0.346	0.925	0.705	0.431	0.913	0.812	0.498	0.907	0.884
L16	0.395	0.873	0.829	0.483	0.853	0.907	0.550	0.842	0.954	0.603	0.836	0.987
L8	0.552	0.755	1.000	0.616	0.738	1.000	0.665	0.728	1.000	0.706	0.724	1.000
L4	0.703	0.578	0.976	0.746	0.565	0.928	0.778	0.559	0.898	0.805	0.558	0.879
L2	0.852	0.329	0.674	0.872	0.324	0.622	0.887	0.324	0.593	0.902	0.329	0.580
Ch	1.000	0.005	0.012	1.000	0.010	0.021	1.000	0.019	0.040	1.000	0.041	0.080

Comparison

Comparison

Future work

- Measure SCM for real software systems, for example ANN
- Explore how properties such as memory effect SCM
- Define how system state vectors can be constructed for software systems
- Research how system dimensionality may be calculated Systems

⁴ https://hackernoon.com/complex-adaptive-systems-and-the-future-of-app-development-2bb0288f05e0

^ahttps://www.linkedin.com/pulse/more-than-sum-its-partsamarjit-s-basra/

Thurner2018: "A Complex System is co-evolving multilayer network."

For Software Systems represented as a multi-layer network use SCM as measure of complexity Ordered system has zero SCM Chaotic system has low SCM There is a system with maximum SCM

MUNI FACULTY OF INFORMATICS