9:42 AM

QEU

nera

10S development

IPhone OS 1, 2007

June 29, 2007, $499 (4GB) / $599 (8GB) iPhones

« SMS (Texting), Calendar, Photos, Camera, YouTube, Stocks, Maps, Weather,
Clock, Calculator, Notes, Phone, Mail, Safari, iPod, and Settings.

* missing was the App Store or any way for developers to create apps

IPhone OS 2

March 2008

* enterprise-level features for businesses such as push email, calendar and
contacts, VPN, and ActiveSync and other Microsoft integrations, and more

 The SDK was based on the Cocoa libraries used to create Mac OS X apps,
but revamped and redesigned for touch screens.

* the initial SDK wasn’t much and many developers resorted to still making jail

broken apps that could support additional features that Apple didn’t allow on
the official App Store

IPhone OS 3

 Core Data, no longer did you need to learn SQLite and
spend hours debugging why something wasn’t saving

* Apple released Game Kit for creating games that
could play with nearby devices, MapKit for taking
advantage of Google maps in apps, and new media
features like working with AVRecorder

No SIM = 11:50 PM

nYET
2 el I
RTES®

o) - 1

10S 4

June 21, 2010 and was the first version of iOS that dropped “iPhone” from the name and started going by “iOS” only

* User wallpapers (yes, 4 versions in for this feature, and yes, this is the
most important feature)

* Multitasking for Internet calling, location use, and audio playback using
“Fast App Switching”

» System-wide spell checking

e Game Center

Notes

» FaceTime for video calling :é |

* Digital zoom for the camera with 5x zoom

« Home screen added support for folders, increasing the number of
apps that could be shown on the Home Screen from 180 to 2,160

I0S 5

After iOS 5, you could set up, backup, and install updates for your iPhone without the need for a Mac or Windows computer. Siri!

* Notifications were revamped and Notification Center was introduced to
show recent notifications

* |Cloud was introduced with iCloud wireless backups, contact syncing,
and more, and replaced Apple’s MobileMe features

* IMessage was introduced to provide user-to-user rich text instant
messaging through the Messages app

 Newsstand was introduced and developers were given access to
provide Newsstand apps that could be updated from the background
to provide updated magazine stories, newspapers, and more.

 Reminders app was introduced that allowed users to created lists of
reminders for later and use location-based reminders

1I0S 6

First without Steve Jobs, Apple’s own Maps app

* A dedicated Podcasts app

 Passbook, which allowed developers to write passes that could
be updated and provide detalls to users through the app like
tickets, member cards, and more (the precursor to the Wallet app)

* Like Twitter integration the year before, the Social framework
added Facebook integration and contact syncing

* New privacy controls allowed users to fine-grain control things like
advertising, camera access, and more

* Developers got AutolLayout, changing the paradigm for laying out
user interfaces in Interface Builder (goodbye struts and springs!)

10S 7

2013, was the first version of i0S that included flat design that was redesigned from the ground up by Jony lve

» CarPlay integration
e AirDrop
 Automatic App Store updates and automatic iI0S updates

* Control Center for quickly accessing commonly used
settings on the iIPhone and iPad

* App Switcher for quickly accessing previously opened apps
(before this was a bar at the bottom of the screen that didn’t
show an app preview)

I0S 8

2014, incorporate shared SMS and phone calls between Mac and iPhone and iPad

* Extensions for sharing content in Apple apps (such as Photo extensions)
» Widgets in the Notification Center

» Ability to make third party keyboards that could finally replace the default iOS
keyboard

* Health app that could aggregate data from amongst third party apps

» |Cloud Drive for storing files, and CloudKit for a zero-API way for developers to write
an deploy cloud data services

* Biometrics frame that allowed for supporting Touch ID in third party apps

 HomeKit, which allowed licensed manufacturers to produce HomeKit equipment and
manage it through the HomeKit gateway, though there was not yet a Home app

» Safari was updated to support WebGL graphics

I0S 9

2015, dedicated this release to fixing some performance issues

* The short-lived 3D feature on supported devices (this is now replaced by long press
gestures for “peeking” and “popping” views)

e Battery savings with a feature to not light the screen for notifications when placed face-
down and also the introduction of Low Power mode

e San Francisco was announced as the new system font replacing Helvetica Neue

* Multitasking changes allowed Picture-in-Picture (PiP) for iPad, and also slide over and split
screen features for the first time on iOS. This made use of Apple’s much-touted size
classes in AutoLayout

* Performance improvements were expanded to the entire system through the introduction of
Metal and iOS 9 made use of Metal to handle the core user interface elements and
graphics rendering

* On the security front, Apple stopped using 4-digits as the standard passcode option and
moved to 6-digits instead. Apple also supported 2FA (Two Factor Authentication) for the
first time in iCloud and Apple IDs

10S 10

2016, Siri integrations and iMessage extensions were huge then and continue to be huge now.

* The last version of I0OS to support 32-bits apps — it’s a 64-
bit world hereafter, and Apple started warning users about
apps that hadn’t been updated upon launch

* Apple introduced the Home app to manage HomeKit

equipment, Sherlocking a new HomeKit apps that had
previously done this job

* A Universal Clipboard feature used iCloud and Continuity
to share a clipboard between iIOS and Mac device; it also
allowed Apple TV’s to use an iPhone to enter text

10S 11

2017

* Do very powerful stuff on-device instead of in the cloud where you risk user privacy.

* ARKIit, Apple’s augmented reality framework that made use of the advanced CPUs
and GPUs available on iOS devices running the A9 chipset and newer.

* Apple Also unlocked Core NFC framework that let developers write apps that could
finally take advantage of the NFC reader built into iPhones that support Apple Pay.

 We said goodbye to 32-bit apps, which was bittersweet for the apps no longer
supported but still useable until now

* |OS 11 also dropped the Social Frameworks introduced in iOS 5 by dropping native
support for Twitter, Facebook, Flickr, and Vimeo.

» |Cloud Drive app was removed and replaced by the Files app, which included APls
for integrating third party file apps into

10S 12

2018, devices launched apps 40%, Screen Time

* Shortcuts app that allowed Siri to perform actions that the
user defined In the app. This was a revamped version of the
Workflow app that Apple had acquired the year before.

* ARKIit2 with 3D object detection

o CarPlay third party app integration for Waze, Google Maps,
and more

* Jrackpad mode in the Keyboard for 3D Touch devices

10S 13

2019, privacy

* |Pad and iOS have now split their codebases. iPad now runs iPadOS
while iPhones and iPod touch run iOS

* Sign In with Apple is a new Single Sign On (SSO) option, and a
requirement if SSO is available in third party apps from Google or
other providers

* External storage support in the Files app to read and write files in the
Files app and third party apps with connected USB mass storage
devices

* Further performance improvements, which included a new app
download format making 50% smaller apps and app launches up to
2X as fast as before

1I0S 14

2020

* App Clips are a new feature expanding on the functionality of the App Store.
Intended as a dynamic feature rather than a permanently installed app

 Car keys allow an iPhone to act as a virtual car key using NFC technology
with compatible cars.

* Jo the left of the first page, the Today View is replaced by a scrollable
widget Ul. Widgets may be placed on the home screen to sit amongst app
icons

Tanker stowaways: ‘Mijacking” ends '

* Improvements to the Search feature on the home screen were made, e peci aces sarm s
including a refined Ul, quick launcher for apps, more detailed web search, e it s
shortcuts to in-app search, and improved as-you-type search suggestions.|

e Wi-Fi MAC address randomization

10S 15

2021

 The Focus allows users to set their "state," such as work, sleep, do not
disturb or a custom focus

* Notifications receive a new look with contact photos for all communication
apps and larger app icons.

* Devices with an A12 chip or later support Live Text in all apps which can
transcribe text from the camera in the real world, images, photos

* The new version allows apps to build more immersive AR experiences
using new APIs to capture objects even faster, custom shaders, dynamic
assets, custom systems and character control.

o Safari was completely redesigned, moving the tab bar and address bar to
the bottom of the screen.

Android vs 10S

* Abstracting from specific technological differences:

e users’ behaviour: fewer users, but spending approx. 2x much on Apps
consistent hardware - 9 devices vs. thousands

 typically need to support just last 2 iOS versions

e these factors result in approx. 30% shorter development time

Monetization $$$

Apple typically has 30% margin. What about Google Play?
1 Paid Apps

fixed price tiers, same price in all countries
2 In-App Purchases (freemium model)

selling via website is possible but it may not be linked from App
3 Subscriptions
4 Auto-Renewable Subscriptions

Apple’s share drops to 15% after first subscription year
5 Apple Pay

real world products only

Apple’s margin is approx. 2%
6 In App Ads: iAds, Facebook Ads, Google Ads, ...
7 Affiliates, B2B (most profitable model)

+ (NSString *)myMethod: (NSString *)firstArg and: (NSArray
*)secondArg { ... }

Swift?

Objective C vs Swift

func myMethod(firstArg: String, secondArg: [Int]) -> String {
o Swift RIS

 much newer, modern syntax and features, less verbose, no header files

* build with functional programming in mind: Closures (lambda expressions) are first-class members
* has generics, strongly typed language

e does not have null pointer

e syntax similar to major languages, such as Java or C# faster development

* ObjectiveC

* more stable, Swift changes syntax a little with every major release still has more libraries

Architecture

Model View Controller

Model

« The central component of the pattern. It is the application's dynamic data structure, MODEL
independent of the user interface.. It directly manages the data, logic and rules of the
application.

View UPDATES MANIPULATES

* Any representation of information such as a chart, diagram or table. Multiple views of the same l |
information are possible, such as a bar chart for management and a tabular view for
accountants.

VIEW CONTROLLER

Controller

* Accepts input and converts it to commands for the model or view. \ /

 The model is responsible for managing the data of the application. It receives user input from O
the controller. \

* The view renders presentation of the model in a particular format. USER

* The controller responds to the user input and performs interactions on the data model objects.
ne controller receives the input, optionally validates it and then passes the input to the model.

Declaring Constants and Variables)

// Declaring a constant using the let keyword

let double: Double = 2.0
// double = 3.0 // Error: You can't reassign a let

let inferredDouble = 2.0 // Inferred as a Double

// Declaring a variable using the var keyword
var mutableInt: Int =1
mutableInt = 2 // OK: You can reassign a var

Numeric Type Conversion)

let integerValue = 8

let doubleValue = 8.0
// let sum = 1ntegerValue + double

// Error: type mismatch

// Use an opt-1in approach that prevents hidden

// conversion errors and helps make type conversion
// 1ntentions explicit

let sum = Double(integerValue) + double

// OK: Both values have the same type

p Strings > 4

// Using a string literal as an 1initial value for

// a constant or variable
let helloWorld = "Hello, World!"

// Using a multiline string literal to span

// over several lines

let helloWorldProgram = """

A "Hello, World!" program generally 1s a computer
program that outputs or displays the message
"Hello, World!"

// Empty string

let emptyString = "" // Using string literal
// Initializer syntax

let anotherEmptyString = String()

// Mutating a string
var mutableString = "Swift"
mutableString += " 1is awesome!"

// String interpolation

// Interpolating a Double

print("The value is \(double)”)

// Interpolating a String

print("This 1is my opinion: \(mutableString)”)

) Tures >3

// Group multiple values 1nto
// a single compound value

let httpError = (503, "Server Error')

// Decomposing a tuple's contents

let (code, reason) = httpError

// Another way to decompose

let codeByIndex = httpError.0

let reasonByIndex = httpError.1

// Ignoring parts of the tuple using _
let (, justTheReason) = httpError

// catchphrase can hold a String or nil
var catchphrase: String? // Automatically set to nil
catchphrase = "Hey, what's up, everybody?"

// Forced unwrapping operator (!)

// countl contains catchphrase's count if
// catchphrase isn't nil; crashes otherwise
let countl: Int = catchphrase!.count

// Optional binding

// If the optional Int returned by

// catchphrase?.count contains a value,

// set a new constant called count to the value

// contained 1n the optional

if let count = catchphrase?.count {
print(count)

}

// Coalescing operator (?7)

// count2 contains catchphrase's count 1if
// catchphrase isn't nil; 0 otherwise

let count2: Int = catchphrase?.count ??7 0

// Chaining operator (?)

// count3 contains catchphrase's count if
// catchphrase isn't nil; nil otherwise
let count3: Int? = catchphrase?.count

// Implicitly unwrapped optionals
let forcedCatchphrase: String! =
"Hey, what's up, everybody?"
let implicitCatchphrase = forcedCatchphrase
// No need for an exclamation mark

Collection Types: Array)

let immutableArray: [String] = ["Alice", "Bob"]
// Type of mutableArray inferred as [String]

var mutableArray = ["Eve", "Frank"]

// Test the membership

let isEveThere = immutableArray.contains(“Eve")
// Access by 1ndex

let name: String = immutableArray[0]

// Update 1tem 1in list;

// crashes 1f the index 1s out of range
mutableArray[1l] = "Bart"

// immutableArrayl[l] = "Bart" // Error: can't change
mutableArray.append("Ellen") // Add an item

// Add an 1tem at index
mutableArray.insert("Gemma'", at: 1)

// Delete by index

let removedPerson = mutableArray.remove(at: 1)

// You can't reassign a let collection nor change
// 1ts content; you can reassign a var collection
// and change 1ts content

mutableArray = ["Ilary", "David"]

mutableArray[0] = “John"

Collection Types: Dictionary)

let immutableDict: [String: String] =

["name": "Kirk", "rank'": "captain"]
// Type of mutableDict inferred as [String: Stringl
var mutableDict =

["name': "Picard", "rank': "captain"]
// Access by key, 1f the key 1isn't found returns nil
let name2: String? = immutableDict['"name"]
// Update value for key
mutableDict["name"] = "Janeway"
// Add new key and value
mutableDict["ship"] = "Voyager"
// Delete by key, 1f the key 1isn't found returns nil
let rankWasRemoved: String? =
mutableDict.removeValue(forKey: "rank")

Collection Types: Set)

// Sets 1gnore duplicate 1tems, so i1mmutableSet
// has 2 1tems: '"chocolate" and "vanilla"
let immutableSet: Set =

["chocolate'", '"vanilla", '"chocolate"]
var mutableSet: Set =

["butterscotch", "strawberry"]
// A way to test membership
immutableSet.contains('"chocolate')
// Add item
mutableSet.insert(''green tea')
// Remove 1tem, 1f the item isn't found returns nil
let flavorWasRemoved: String? =
mutableSet.remove("strawberry")

Control Flow: Loops)

// Iterate over list or set

for item in 1listOrSet {
print(item)

}

// Iterate over dictionary

for (key, value) in dictionary {
print('"\(key) = \(value)")

}

// Iterate over ranges

// Closed range operator (...)
for i in 0...10 {

print(i) // 0 to 10
}

// Half-open range operator (..<)
for i in 0..<10 {

print(i) // @ to 9
}

// while

var x = 0

while x < 10 {
X +=1
print(x)

}

// repeat-while
repeat {
X == 1
print(x)
} while(x > 0)

Control Flow: Conditionals

// out of a scope if one or more conditions

) // Using guard to transfer program control
// aren’t met

// Using if to choose different paths for n in 1...30 {
let number = 88 guard n % 2 == 0 else {
if (number <= 10) { continue

// If number <= 10, this gets executed b £0"\(n) i "
} else if (number > 10 && number < 100) { } prin n) 1s cven

// If number > 10 && number < 100,

// this gets executed // Using switch to choose different paths
} else { let year = 2012

// Otherwise this gets executed switch year {
} case 2003, 2004:

// Execute this statement if year is 2003 or 2004

// Ternary operator print("Panther or Tiger")
// A shorthand for an if-else condition case 2010:
let height = 100 // Execute this statement if year is exactly 2010
let isTall = height > 200 ? true : false print('Lion")

case 2012...2015:

// Execute this statement if year is

// within the range 2012-2015,

// range boundaries included

print('"Mountain Lion through El Captain'')
default:

// Every switch statement must be exhaustive

print("Not already classified")

}

// Function with parameters and return value

// A Void function f“’r':tﬁfg(:‘f;t' y: Int) —> Int {
func sayHello() { }
print('"Hello") let value = add(x: 8, y: 10)
} // If the function contains a single expression,
, , // the return value can be omitted
// Function with parameters func multiply(x: Int, y: Int) -> Int {
func sayHello(name: String) { X xY
¥
print('"Hello \(name)!')
} // Specifying arguments labels
func add(x xVal: Int, y yval: Int) —> Int {
// Function with default parameters ERGSERGE xVal + yval
func sayHello(name: String = '"Lorenzo'") {
print("Hello \(name)!'") // Omitting the argument label for one
} // (or more) parameters
func add(_ x: Int, y: Int) — Int {
. .) return x + y
// Function with mix of default and }
// regular parameters let value = add(8, y: 10)
s : - 1 " =
func .sayHello(name.. string = "Lorenzo', age: Int) { // A function that accepts another function
n B
print("\(name) is \(age) years old!") func doMath(operation: (Int, Int) -> Int, a: Int, b:
} Int) = Int {
// Using just the non default value) return operation(a, b)

sayHello(age: 35)

) Closres >

let adder: (Int, Int) — Int = { (x, y) in x + y }

// Closures with shorthand argument name
let square: (Int) —> Int = { $0 x $0 }

// Passing a closure to a function

let addWithClosure = doMath(operation: adder, a: 2,
b: 3)

Enumerations)

enum Taste {
case sweet, sour, salty, bitter, umami

}

let vinegarTaste = Taste.sour

// Iterating through an enum class
enum Food: Caselterable {
case pasta, pizza, hamburger

}

for food in Food.allCases {
print(food)
}

// enum with String raw values
enum Currency: String {

case euro = ""EUR"
case dollar = "USD"
case pound = "GBP"

}

// Print the backing value

let euroSymbol = Currency.euro.rawValue
print("The currency symbol for Euro is \
(euroSymbol)")

// enum with associated values
enum Content {

case empty

case text(String)

case number(Int)

}

// Matching enumeration values with a switch

statement

let content = Content.text('"'Hello")

switch content {

case .empty:
print("Value is empty'')

case .text(let value): // Extract the String value
print("Value is \(value)'")

case .number(_): // Ignore the Int value
print("Value is a number")

}

D siructs 3

struct User {
var name: String
var age: Int = 40

}

// A memberwise initializer is automatically
// created to accept parameters matching the
// properties of the struct

let john = User(name: '"John', age: 35)

// Memberwise initializer uses default parameter
// values for any properties that have them
let dave = User(name: “Dave'')

// Accessing properties
print('""\(john.name) is \(john.age) years old")

p Casses 3

class Person {
let name: String
// Class initializer
init(name: String) {
self.name = name

}

// Using deinit to perform
// object's resources cleanup
deinit {
print("Perform the deinitialization'')

}

var numberOfLaughs: Int = 0
func laugh() {
humberOfLaughs += 1

}

// Define a computed property
var isHappy: Bool {
return numberOfLaughs > 0

}
}
let david = Person(name: ''David')
david. laugh()

let happy = david.isHappy

p Inheritance > o

class Student: Person {
var numberOfExams: Int = 0

// Override isHappy computed property

// providing additional logic

override var isHappy: Bool {
numberOfLaughs > @ && numberOfExams > 2

}
}

let ray = Student(name: ''Ray'')

ray. numberOfExams = 4

ray. Laugh()

let happy = ray.isHappy

// Mark Child as final to prevent subclassing
final class Child: Person { }

Designated & Convenience Initializers)

// A class must have at least one

// designated initializer and may have one or more
// convenience initializers

class ModeOfTransportation {

}

let name: String
// Define a designated initializer
// that takes a single argument called name
init(name: String) {
self.name = name
}

// Define a convenience initializer
// that takes no arguments
convenience init() {

// Delegate to the internal

// designated initializer

self.init(name: '"Not classified")

}

class Vehicle: ModeOfTransportation {

}

let wheels: Int
// Define a designated initializer
// that takes two arguments called name and wheels
init(name: String, wheels: Int) {
self.wheels = wheels
// Delegate up to the superclass
// designated initializer
: super.init(name: name)
// Override the superclass convenience initializer
override convenience init(name: String) {
// Delegate to the internal
// designated initializer
self.init(name: name, wheels: 4)

}

p Extensions)

// Extensions add new functionality to an existing
// class, structure, enumeration, or protocol type
extension String {

// Extending String type to calculate
// 1f a String instance 1s truthy or falsy
var boolValue: Bool {

if self == "1" {
return true
¥

return false

h
¥

let i1sTrue = "0".boolValue

Error Handling)

// Representing an error

enum BeverageMachineError: Error {
case invalidSelection
case 1nsufficientFunds
case outOfStock

¥

func selectBeverage(_ selection: Int) throws —>
String {

// Some logic here

return "Waiting for beverage..."

¥

// If an error 1s thrown by the code in the do

// clause, 1t 1s matched against the catch clauses

// to determine which one of them can handle

// the error

let message: String

do {
message = try selectBeverage(20)

} catch BeverageMachineError.invalidSelection {
print("Invalid selection")

} catch BeverageMachineError.insufficientFunds {
print("Insufficient funds")

} catch BeverageMachineError.outOfStock {
print("Out of stock")

} catch {

print("Generic error")

¥

// If an error is thrown while evaluating the try?
// expression, the value of the expression is nil
let nillableMessage = try? selectBeverage(10)

// If an error is throws you'll get a runtime error,
// otherwise the value
let throwableMessage = try! selectBeverage(10)

Coding Protocols)

import Foundation

// Codable conformance 1s the same as conforming
// separately to Decodable and Encodable protocols
struct UserInfo: Codable {

let username: String

let loginCount: Int

¥

// Conform to CustomStringConvertible to provide
// a specific representation when converting the
// instance to a string
extension UserInfo: CustomStringConvertible {
var description: String {
return "\ (username) has tried to login \
(loginCount) time(s)"

by
by
// Define multiline string literal to represent JSON
let json = """
{ "username": "David", "loginCount": 2 }

// Using JSONDecoder to serialize JSON
let decoder = JSONDecoder()

// Transform string to its data representation
let data = json.data(using: .utf8)!

let userInfo = try! decoder.decode(UserInfo.self,
from: data)

print(userInfo)

// Using Encodable to serialize a struct
let encoder = JSONEncoder()
let userInfoData = try! encoder.encode(userInfo)

// Transform data to its string representation
let jsonString = String(data: userInfoData,
encoding: .utf8)!

print(jsonString)

Access Control)

// A module — a framework or an application - 1s
// a single unit of code distribution that can be
// 1mported by another module with import keyword

// Class accessible from other modules
public class AccesslLevelsShowcase {

// Property accessible from other modules
public var somePublicProperty = 0

// Property accessible from the module
// 1s contained into
var somelnternalProperty = 0

// Property accessible from its own
// defining source file
fileprivate func someFilePrivateMethod() {}

// Property accessible from 1its
// enclosing declaration
private func somePrivateMethod() {}

