PV260 - SOFTWARE QUALITY
[Spring 2024]

PRINCIPLES OF TESTING(_S FTWARE TESTING
TECHNIQUES & TEST C SES RISK ANALYSIS

b4 .,ﬂ_ LK % \/ 1 "_':'7:7 B

Bruno Rossi
brossi@mail.muni.cz
ally
LAB OF SOFTWARE ARCHITECTURES lasa PlS

AND INFORMATION SYSTEMS

FACULTY OF INFORMATICS
MASARYK UNIVERSITY, BRNO

"Discovering the unexpected:is
more.important than confirming
the known."

George Box

Introduction

W

* In Eclipse and Mozilla, 30-40% of all changes are fixes
(Sliverski et al., 2005)

* Fixes are 2-3 times smaller than other changes (Mockus +
Votta, 2000)

* 4% of all one-line changes introduce new errors
(Purushothaman + Perry, 2004)

WHY
PROGRAMS

A. Zeller, Why Programs Fail, Second Edition: A Guide to Systematic Debugging,
2 edition. Amsterdam; Boston: Morgan Kaufmann, 2009.

3/81

Motivational exarﬁple%?a\j}g\emory Leak (1/3)

Apache web server, version 2.0.48
Response to normal page request on secure (HTTPS) port

Static void ssl io filter disable(ap filter t *f)

{ bio filter in ctx t *inctx = f->ctx;

No obvious error, but Apache
leaked memory slowly (in
normal use) or quickly (if
exploited for a DOS attack)

inctx->ssl = NULL;
inctx->filter ctx->pssl = NULL

SOFTWARE TESTING
AND ANALYSIS

& = Lo
Sy \
A ph
o | —
Fh- e
Lht = -
y —

(c) 2007 Mauro Pezze & Michal Young

4/81

Motivational exarﬁplea?a\lg\emory Leak (2/3)

Apache web server, version 2.0.48
Response to normal page request on secure (HTTPS) port

Static void ssl io filter disable(ap filter t *f)

{ bio filter in ctx t *inctx = f->ctx;

inctx->ssl = NULL; The missing code is for a structure
I eI ey Iaesy defined and created elsewhere,
accessed through an opaque pointer.

SOFTWARE TESTING
AND ANALYSIS

& = Lo
Sy \
A ph
Iy | —
Fh- e
4 - B
y —

(c) 2007 Mauro Pezze & Michal Young

5/81

Motivational exarﬁplea?a\lg\emory Leak (3/3)

Apache web server, version 2.0.48
Response to normal page request on secure (HTTPS) port

Static void ssl io filter disable(ap filter t *f)
{ bio filter in ctx t *inctx = f->ctx;

inctx->ssl = NULL;
inctx->filter ctx->pssl =

Almost impossible to find with unit testing.
(Inspection and some dynamic techniques
could have found it)

SOFTWARE TESTING
AND ANALYSIS

& = Lo
Sy \
A ph
o | —
Fh- e
4 - -
)

(c) 2007 Mauro Pezze & Michal Young

6/81

The code in question is this in steam.sh:

figure out the absolute path to the script being run a bit
non-obvious, the ${0%/*} pulls the path out of $0, cd's into ths
specified directory, then uses $PWD to figure out where that
directory lives - and all this in a subshell, so we don't affec
$PWD

STEAMROOT="$(cd "${0%/*}" && echo $PWD)"

Scary!
rm -rf "$STEAMROOT/"*

>

Yes, $STEAMROOT can end up being empty, but no check is made for
that. Notice the # Scary! line, an indication the programmer knew
there was the potential for catastrophe.

If you're running Steam on Linu, it's probably best to make sure you
have your files backed up and avoid moving your Steam directory, even
if you symlink to the new location, for the time being. ®

https://en.wikipedia.org/wiki/List_of software bugs

7/81

https://en.wikipedia.org/wiki/List_of_software_bugs

What is Software /jTestiiﬁg;/@ oo

“Testing is the process of exercising or evaluating a system or
system component by manual or automated means to verify that it
‘satisfies specified requirements.” IEEE standards definition

Test Oracle Problem: the challenge of a mechanism to determine
“if the output is correct given a set of inputs

"Program testing can be used to show the presence of bugs, but never to show their
absence!” - Edsger W. Dijkstra

8/81

Software Testing - Important Terms -

Failure: “(A) Termination of the ability of a product to perform a required
function or its inability to perform within previously specified limits. (B) An event
“in which a system or system component does not perform a required function
within specified limits.

- = A failure may be produced when a fault is encountered

Defect: “An imperfection or deficiency in a work product where that work
product does not meet its requirements or specifications and needs to be either
repaired or replaced.”

Definitions according to IEEE Std 1044-2009 “|IEEE Standard Classification for Software Anomalies“ -

What about the term ’fféslg”??if

* Very often a synonymous of “defect” so that “debugging” is the
activity related to removing defects in code
However:

— it may lead to confusion: it is not rare the case in which “bug” is
used in natural language to refer to different levels:

“this line is buggy” - “this pointer being null, is a bug” - “the
program crashed: it's a bug”

— starting from Dijkstra, there was the search for terms that could
increase the responsibility of developers - the term “bug” might give
the impression of something that magically appears into software

10/81

4 |

\

Hopefully you haye not: - | 1any of these...

[]
A problem has been detected and Reactos has heen shut down to preve
To your camputer. . p
Your PC ran into a problem and needs to restart. We're just
If this is the first time you'wve seen this Stop error screen, . : | 0
restart your computer. IT this screen appears again, follow coIIectlng some error info, and then we'll restart for you. 0%
these steps: complete)

Check to he sure you have adequate disk space. If a driver is

ddentified in the stop message, disable the driver or check

W-'lth the manufacturer fDr dr-'lver updates_ Try chang-’lng V-'ldeo If you'd like to know more, you can search online later for this error: HAL INITIALIZATION FAILED
adapters.

Check with wour hardware vendor for any BIOS updates. Disahle
BIOS memory options such as caching or shadowing. If wou need
to use safe mode to remove or disable components, restart your
computer, press F8 to select aAdvanced startup options, and then
select safe Mode.

Technical informatiaon:

Wrw SToP: 0x0000001E (0xB0000003, 0xB00BCESZ, 0xOF4DCAGD, Ox00000000)

%% NTOSKRML.EXE - address 80000003 base at 80000000, Dates .
sooooo00, pates Booting 'Fedora Core (2.6.9-1.667)°

root (hd0,0)
Filesystem type is ext2fs, partition tvype 0xB83
kernel /vmlinuz-2.6.9-1.667 ro root=/dev/¥ollGroup00
[Linux-bzImage, setup=01400, size=0x155dah]
| Windous | initrd /initrd-2.6.9-1.667.img
. [Linux-initrd @ 0x4000000, 0xed293 bytes]
fin error has occurred. To continue:
Press Enter to return to Windows, or Uncompressing Linux .. Ok, booting the kernel.
Press CTRL+ALT+DEL to restart your computer. If you do this, ACPI: Bios age (1998) fails cutoff (2001), acpi forg
you will lose any unsaved information in all open applications. audit (1148855271.587:0): initialized
Red Hat mash version 4.1.18 starting
BReading all physical volumes. This may take a whi
Press any key to continue _ Found wvolume group "¥OlGroupl0™ using metadata t
2 leogical volume(s) in volume group "VYolGroup00™
Enforcing mode requested but no policy loaded. Halti
Kernel panic - not syncing: Attempted to kill initl!

Error: OE : 016F : BFF9B3D4

)(

...or some of these

(11| Tube;

500 Internal Server Error

Sorry. something went wrong.

A team of highly trained monkevs has been dispatched to deal with this situation.

If vou see them. show them this information:

AB3IBWEPIDWTs5FLs3YWvAIbHZ zGGd1X2seRUSOXTKh 2K 1gde FLVY4GDB jkn
8jPuyamICiGBZExjMpiZT4j7rx-BNZ7@7H-cPNSEbION_b7MYTE92YvtZtrQI
DsAGxZ38bYUMy4UyGIHEGSUGANEBUXXX35 - jWI1Z0tkIoj _ZNd1o0TOISG2PC
X_mCxpP510Qi7-rZUcx83133yavTlr2lcE4EUyS@TyqzFqzh_QIVNbc7_yxRH
BudCCKkxQVBdsBDK2qejBUTemZ31SFOWCI@wUulgiE-L758Wx0mGjsP2Gi5p

6Z3-8IepREkKPtUG4ASpzpZaPBIqWlBX0ZBGnolliAiqq0cneEraHFsB8aCNig-
i FALT i -

Google

404. That’s an error.

The requested URL fintl/en/options/ was not found on this
server. That’s all we know.

12/81

Basic Principles of Software Testing

Basic Principles of Testing * * -

* Sensitivity: better to fail every time than sometimes
 Redundancy: making intentions explicit

* Restrictions: making the problem easier

* Partition: divide and conquer

* Visibility: making information accessible

* Feedback: applying lessons from experience in process
and techniques

(c) 2007 Mauro Pezze & Michal Young 14/81

Sensitivity: better to fal\\lﬁgy_eryj;rme than sometimes

* Consistency helps:

— atest selection criterion works better if every selected test provides the

same result, i.e., if the program fails with one of the selected tests,
it fails with all of them (reliable criteria)

— run time deadlock analysis works better if it is machine independent,
l.e., if the program deadlocks when analyzed on one machine, it
deadlocks on every machine

SOFTWARE TESTING
AND ANALYSIS

(c) 2007 Mauro Pezze & Michal Young - |

Sensitivity: better to fa;il?_g}éery;time than sometimes

* Look at the following code fragment

char before[] “=Before=";
char middle][] “Middle”;
char after [] “=After=";

int main(int argc, char *argv) {

strcpy (middle, “Muddled”); /* fault, may not fail */
strncpy (middle, “Muddled”, sizeof (middle)); /* fault, may not fail */

What's the problem?

SOFTWARE TESTING
AND ANALYSIS

(c) 2007 Mauro Pezzé & Michal Young - |

\

° ° ° ’ 2 \\V ’) v
Sensitivity Example « - * =

AN, _

* Let's make the following adjustment

char before[] = “=Before=";
char middle[] = “Middle”;
char after [] = “=After=";

int main(int argc, char *argv) {

strcpy (middle, “Muddled”); /* fault, may not fail */
strncpy (middle, “Muddled”, sizeof (middle)); /* fault, may not fail */
stringcpy (middle, “Muddled”, sizeof (middle)); /* guaranteed to fail */

}

void stringcpy (char *target, const char *source, int size) {
assert(strlen(source) < size);
strcpy (target, source);

This adds sensitivity to a
non-sensitive solution

SOFTWARE TESTING
AND ANALYSIS

(c) 2007 Mauro Pezzé & Michal Young - |

\
\
\
\\\7
) =

Sensitivity Exam;gle

4 —=

X {
h

e N

* Let's look at the following Java code fragment. We use the ArrayList as a
sort of queue and we remove one item after printing the results

public class TestIterator ({
public static void main(String args[]) {
List<String> myList = new ArrayList<>();

myList.add ("PV260") ;
myList.add("SW") ;
myList.add("Quality");

Iterator<String> it = myList.iterator();
while (it.hasNext()) {
String value = it.next();
System.out.println(value) ;
myList.remove (value) ;

Will this output
"PV260

SW

Quality" ?

\
\
\\
v

\

Sensitivity Example - -

e N

* Let's look at the following Java code fragment. We use the ArrayList as a
sort of queue and we remove one item after printing the results

public class TestIterator ({
public static void main(String args[]) {
List<String> myList = new ArrayList<>();

myList.add ("PV260") ;
myList.add("SW") ;
myList.add("Quality");

Iterator<String> it = myList.iterator();
while (it.hasNext()) {
String value = it.next();
System.out.println(value) ;

Actually, this throws
java.util.ConcurrentModificationException

Sensitivity Example » - = -

B

From Java SE documentation: é Java SE Technical
===\ Documentation

“[...] Some lterator implementations (including those of all the general
purpose collection implementations provided by the JRE) may choose to
throw this exception if this behavior is detected. Iterators that do this are
known as fail-fast iterators, as they fail quickly and cleanly, rather that
risking arbitrary, non-deterministic behavior at an undetermined time in
the future.”

“Note that fail-fast behavior cannot be guaranteed as it is, generally
speaking, impossible to make any hard guarantees in the presence of
unsynchronized concurrent modification. Fail-fast operations throw
ConcurrentModificationException on a best-effort basis. Therefore, it
would be wrong to write a program that depended on this exception for
its correctness: ConcurrentModificationException should be used only
to detect bugs.”

20/81

Redundancy: making intentions explicit

« Redundant checks can increase the capabilities of catching
specific faults early or more efficiently.

- Static type checking is redundant with respect to dynamic type
checking, but it can reveal many type mismatches earlier and more
efficiently.

- Validation of requirement specifications is redundant with respect
to validation of the final software, but can reveal errors earlier and
more efficiently.

- Testing and proof of properties are redundant, but are often used
together to increase confidence

SOFTWARE TESTING
AND ANALYSIS

(c) 2007 Mauro Pezze & Michal Young

21/81

Redundancy Example - * =~

‘4\\ {

e Adding redundancy by asserting that a condition must always be
true for the correct execution of the program

void save(File *file, const char *dest) {
assert(this.isInitialized()) ;

« From alanguage (e.g. Java) point of view, think about declarations
of thrown exceptions from a method

public void throwException() throws FileNotFoundException{
throw new FileNotFoundException() ;

}

Think if you could throw any exception from a method
without declaration in the method signature

22/81

Restriction: making the problem easier

« Suitable restrictions can reduce hard (unsolvable) problems to
simpler (solvable) problems

- A weaker spec may be easier to check: it is impossible (in general) to
show that pointers are used correctly, but the simple Java requirement
that pointers are initialized before use is simple to enforce.

- A stronger spec may be easier to check: it is impossible (in general) to
show that type errors do not occur at run-time in a dynamically typed
language, but statically typed languages impose stronger restrictions that
are easily checkable.

SOFTWARE TESTING
AND ANALYSIS

(c) 2007 Mauro Pezze & Michal Young

23/81

\

\
b

Restriction Example

* Will the following compile in Java?

public static void questionable () {
int k;
for (int i=0; i<10;++i){
if (someCondition(i)) {
k =0;
} else {

Java ALWAYS enforces variable initialization before usage

int k: as the following example shows - this is a case of restriction

if (true == false) {

}

But restrictions can be applied at different levels, e.g. at the
architectural level the decision of making the HTTP protocol
stateless hugely simplified testing (and as such made the

protocol more robust)

Partition: Divide & Cgferi?? SR

« Hard testing and verification problems can be handled by suitably
partitioning the input space:
- both structural (white box) and functional test (black box) selection

criteria identify suitable partitions of code or specifications (partitions
drive the sampling of the input space)

- verification techniques fold the input space according to specific
characteristics, grouping homogeneous data together and determining
partitions

— Examples of structural (white box) techniques: unit testing,
integration testing, performance testing

— Examples of functional (black box) techniques: system testing,
acceptance testing

SOFTWARE TESTING
AND ANALISIS

(c) 2007 Mauro Pezze & Michal Young -

Partition Example -+ -

SOFTWARE TESTING
o]

Non-uniform distribution of faults
Example: Java class “roots” applies quadratic equation ax’+bx+c=0

:—bi\/b2—4ac
2d

Incomplete implementation logic: Program does not properly handle the
case in whichbz-4ac=0anda=0

These would make good input values for test cases

— Failing values are sparse in the input space — needles in a very big
haystack. Random sampling is unlikely to choose a=0.0 and b=0.0

X

(c) 2007 Mauro Pezze & Michal Young

26/81

Partition Example .« .+ .~

[\\ \\\: \\./’ 4\)

Failures are sparse
- in the space of
[No failure possible inputs ...

DDDDDDDDDDIﬁ/DDDDDDD%//CﬂfIDDDDDD
00 OO0 00|00|00 OO0 OO0(00 D=da 00|00 oo

OO0 O0O0/00 O0/00 OO0 O0O(EE OO0 OO/00 OO
OO0 00|00 O0(00 OO0 OoO(mo/oo OO OooO ao

00
OO

00 00|00 00|00 00 00(00 00 SS OO0 OO0/00 a0
00

... but dense in some
parts of the space

B Failure (valuable test case)

OO0 00|00 O0(00 00 o000 oo OO0 OooO ao

OO0 O0O0/00 0000 O00 O0(00 OO0 OO0 OO0/00 a0
OO0 O0O|/00 O0|00 00 00|00 Oo00 Od Ooo/0o0 ad

OO0 O0O0/00 0000 O00 O0/00 0O 8El|00 00 O00 00
OO0 O0O0/00 O0/00 00 O00/00 0O el |00 00 00 0o

If we systematically test some l/I-'unct‘ional testing is one way of
cases from each part, we will drawing pink lines to isolate
: ﬂ.ﬁmﬂ?'f . Linclude the dense parts regions with likely failures

(the haystack)

The space of possible input values

(c) 2007 Mauro Pezze & Michal Young -

Visibility: Judging Status * -

* The ability to measure progress or status against
goals

» X visibility = ability to judge how we are doing on X, e.g., schedule
visibility = “Are we ahead or behind schedule”, quality visibility =
“Does the quality meet our objectives?”

- Involves setting goals that can be assessed at each stage of
development

* The biggest challenge is early assessment, e.g., assessing
specifications and design with respect to product quality

* Related to observability

- Example: Choosing a simple / standard internal data format to
facilitate unit testing

SOFTWARE TESTING
AND ANALYSIS

(c) 2007 Mauro Pezze & Michal Young o

Visibility Example -«

e The HTTP Protocol

GET /index.html HTTP/1.1
Host: www.google.com

Why wasn't a more efficient binary format selected?

To note HTTP 2.0 will use a binary format

(from https://http2.github.io/faq):

"Binary protocols are more efficient to parse, more compact “on
the wire”, and most importantly, they are much less error-prone,
compared to textual protocols like HTTP/1.x, because they often
have a number of affordances to “help” with things like whitespace
handling, capitalization, line endings, blank links and so on.”

In fact, reduction of visibility is confirmed by

"Its true that HTTP/2 isn't usable through telnet, but we already
have some tool support, such as a Wireshark plugin.”

29/81

velopment process

Feedback: tuning th

e Learning from experience: Each project provides information to
improve the next project

« Examples

- Checklists are built on the basis of errors revealed in the past
- Error taxonomies can help in building better test selection criteria
- Design guidelines can avoid common pitfalls

- Using a software reliability model fitting past project data
- Looking for problematic modules based on prior knowledge

SOFTWARE TESTING
Ll

(c) 2007 Mauro Pezze & Michal Young

30/81

Testing Levels & Techniques

31/81

32/81

Testing Levels (1,:/2) ﬁ

A system is tested for acceptability. Aim: evaluate the system’s
compliance with the business requirements and ready for delivery.

A complete, integrated system/software is tested. Aim: evaluate the
system’s compliance with the specified requirements

’ Yy Individual units are combined and tested as a group. Aim: expose faults in
| Integration Testing ! the interaction between integrated units

e -. Alevel of the software testing process where individual units/components
: . . | — Vali i
: Unit Testing : 31; iizonf;v(\]/lare/system are tested — Validate that each unit performs as

http://softwaretestingfundamentals.com/software-testing-levels/

33/81

http://softwaretestingfundamentals.com/software-testing-levels/

Testing Levels (2:/ 2) % 9

Acceptance Testing | BLACK BoX TESTING

e :
1_ - System Test 1ng _ " BLACK BOX TESTING
R :
l —Integra.t 10n Test ing‘:i BLACK BOX | WHITE BOX TESTING
e :
: o _U_r;;c_ _'I:;s_t_i_r;; - -E WHITE BOX TESTING

‘ ; ! Test Plans / Test cases are created *for each” level!

http://softwaretestingfundamentals.com/software-testing-levels/

34/81

http://softwaretestingfundamentals.com/software-testing-levels/

UnitTesting / , oot 7%

* Unit Testing is a process in which units (e.g., classes) are
tested independently in isolation — tests must:

be Fast

be Simple

not include duplication of =
implementation logic ® 8

be Readable . 8
be Deterministic Img source: https://martinfowler.com/bliki/UnitTest.html

be part of the build process
use Test Doubles (e.g., mocks)
have consistent haming conventions

35/81

https://martinfowler.com/bliki/UnitTest.html

Unit Testing - Arrangeg,,&gcg and Assert (AAA) Pattern

* Arrange: Set up the conditions for your test (e.g., create
Instances and set-up variables)

* Act: run the code under test
* Assert: verify the behaviour

MyStringUtils.init () ;

result = MyStringUtils.reverse (“Anna”) ;

assertEquals (result, "annA"),

36/81

About Test Doubles =

- S =9
Sy
o

1 AV
]
\
=
L
A
N\ £
\ AN A

* Test Double': a replacement for a dependent component or
module that is used in a unit test

Dummy objects”: items passed around but never used (e.g., to
fill parameter lists)

Fake objects: have working implementations but not suitable for
production (e.g., an in-memory database)

Stubs provide constrained answers to calls made during the test,
not responding to anything outside of the tests

Spies: stubs that also record information based on how they
were called (e.g., stub email service that logs # emails sent)
Mocks: “objects pre-programmed with expectations which form a
specification of the calls they are expected to receive™

1. Defined by Gerard Meszaros in the book "xUnit Test Patterns" (2007)

2. For more details see: https://martinfowler.com/articles/mocksArentStubs.html

37/81

https://martinfowler.com/articles/mocksArentStubs.html

Integration Testing -+« * "~

* The goal of Integration Testing is to test “whether many
separately developed modules work together as expected

— Differently than Unit tests, integration tests use external
dependencies

— Integration Tests verify several modules at once
— Slower and more complex than Unit tests

7

See https://martinfowler.com/bliki/IntegrationTest.html |

https://martinfowler.com/bliki/IntegrationTest.html

System Testing . - *

g

x A\
]
-
&
N T
\ AN
< RN

9

* Tests that deal with the validation of the complete and
integrated software system. The main categories:

Usability Testing: test the usability / Ul of the system so that
they meet the requirements

Load/Stress Testing: verify the system under heavy loads

Performance: verify the performance of the system, if complies
to the requirements

Functional Testing: focuses more on the requirements side:
checking for functionality that might be missing

Security Testing: identify vulnerabilities of the system (security
should be embedded from the beginning, see Security by
Design)

There can be more sub-categories: installation/deployment
testing, documentation testing, migration testing, etc...

39/81

Acceptance TeSl;S (1 AZAV P 7(2 -

Acceptance Tests ensure that a software system meets the requirements
from the customer

Example: using Fitnesse (http://fitnesse.org) to write acceptance tests so that the
customer can actually write the acceptance conditions for the software

Looking at our previous example the “root” case
ax’+bx+c=0
That we solve by means of

X:—bi\/b2—4ac

2a

The customer can write what he expects from the implementation

cz.muni.pv260.RootFixture

a b C runRoot?
1 25 |2 2

3 25 | 3 2
4 2 4 0
16 | 2 12 |0
1 2 1 1

) FitNesse

40/81

http://fitnesse.org/

/N

Acceptance Tests (2 ,4*

Other frameworks are available for automation of acceptance

testing, like Selenium (https://www.seleniumhq.org) for web-based
acceptance testing

%‘ SeleniumHQ edit this page search selenium: _ Go

Browser Autornation

Projects Download Documentation Support About
What is Selenium?

Selenium automates browsers. That's itl What you do with that power is entirely up to
you. Primarily, it is for automating web applications for testing purposes, but is certainly

not limited to just that. Boring web-based administration tasks can (and should!) be
automated as well.

Selenium has the support of some of the largest browser vendors who have taken (or are
taking) steps to make Selenium a native part of their browser. It is also the core
technology in countless other browser automation tools, APIs and frameworks.

Selenium is a suite of
tools to automate web

browsers across many
Which part of Selenium is appropriate for me? platforms.

Selenium...

® runs in many
Selenium WebDriver Selenium IDE browsers and

operating systems
* can be controlled by
many prodramming

languages and

testing framewarks.

If you want to If you want to
e create robust, browser-based regression e create quick bug reproduction d
automation suites and tests scripts
s scale and distribute scripts across many e create scripts to aid in
environments automation-aided exploratory

41/81

https://www.seleniumhq.org/

il .
Q-—s=r9

Regression Testing = = -

A\ A "

* Regression Testing: verify that no changes made during the
development have caused new defects (or old defects re-

appearing)
* This is a cross-cutting concept in relation to different test

levels

42/81

Smoke Testing / Sanity Testing

Software Smoke Testing: carried out to check whether the
critical functionalities of a software application in a new unstable
build are working properly

— If the smoke test fails, the build is rejected and not deployed

Software Sanity Testing: done to verify that a software
application in a new stable build is working as expected and to go
for further testing at other levels

— the goal is to catch issues as soon as possible

» Build rejected / accepted

p Continue with further tests

43/81

Exploratory Testing .+ - * ~ .~

It is about learning, design tests and executing the tests
Might trigger failures that systematic testing misses

This is a kind a semi-manual test
- Completely freestyle: no rules, just the judgment of the tester

— Strategy-based: use common techniques (like boundary checks)
together with the instinct of the tester

— Scenario-based: start from the requirements and try to play
those with variations

This explains why there are videogame companies paying
players to test their games — e.qg., “do the craziest things you
will think about when playing the game”

44/81

|

7 S A \ |
= S / - N
¥) X
A WA | TR =4

Test Driven Developrr

1) Create a failing Test * Tests have to be:
2) Code it to make it pass - Fast: short time to run
— Independent: never depend on other
3) Refactor other code and tests, components, db, etc...
tests — Repeatable: they must be deterministic

— Self-checking: a test must be able to
check its own state

— Timely: test must come first than the
implementation

45/81

K il

Behaviou rDrgve@Be

o

ment (BDD) (1/2)

Behaviour Driven Development (BDD) (2/2)

* Run tests based on scenarios according to Given, When,
Then constructs

: When a user adds a product to the shopping cart, the product should be
included in the user's shopping cart.

a user
a shopping cart
a product

the user adds the product to the shopping cart
the product must be included in the list of the shoppingcart's entries

public void aUser() {
user = new User();

}

public void aShoppingCart() ({
shoppingCart = new ShoppingCart();
}

public void aProduct() ({
product = new Product ("Coffee")

}

public void userAddsProductToTheShoppingCart() {
ShoppingCart.add (user, product);
}

public void productMustBeListed() {

List<Product> entries = shoppingCart.getProductsByUser (user) ;
Assert.assertTrue (entries.contains (product)) ;

Fuzzing & Metamorphic
Testing

48/81

Software Fuzzing or E\u%\z\\;“l’e‘s\\t’ing (1/3)

* Atesting technique to inject invalid, malformed, or
unexpected inputs into a system to reveal software failures
and crashes

Ldentify — = Tdentify inpu Generate
Target System [G TS Fuzzed Data

- Montor ?ystem = Execute
behaviour Fuzzed Data

Log Defects

If you are developing a software of a certain importance, somebody is (likely)
~ fuzzing your system to try to discover vulnerabilities (e.g., buffer overflows)
- that can be exploited

See https://www.fuzzingbook.org/html/Fuzzer.html

49/81

https://www.fuzzingbook.org/html/Fuzzer.html

Software Fuzzing or E&\Z;Te’sfﬁng (’2"/\3)

* Typical structure of a fuzzer:

[(""""””’"""""""""”””’"""""""""””’"""""""""””’”""""""}
Example: testing the output for inputs such

Cenp as BB ELE \uodcc\udb87 B — will
_ the system crash? |

‘ \I/ upda‘ted Mpu‘ts
inputs

Fuzz Eng?ne_

| AN

mutated inpu‘ts coverage ou‘tpu‘ts

Fuzz Target %@% Sanitizer

SUT = System Under Test

50/81

£

Software Fuzzing orl{ 74 Te%tfilng (3 7\3)

* Suggested video to watch - at home :)

SUPPLYCHAIN
SECURITYCON

S OPEN SOURCE SUMMIT

Making Fuzzing Part of Your
Software Development Lifecycle

Jonathan Metzman, Google

https://www.youtube.com/watch?v=eg7SiXr31Qk

51/81

https://www.youtube.com/watch?v=eg7SiXr31Qk

Metamorphic Te'stingg\(?i;/”;\) %

* Metamorphic testing: test cases are designed based on the
relationships between the input and output of the system
under test rather than on specific input-output pairs

* Check whether the expected relationships or properties still
hold after applying the transformations to the inputs

* The test oracle problem becomes more like to check if the
metamorphic relations hold

For a very interesting discussion about testing ML models with metamorphic testing, see:
https://towardsdatascience.com/metamorphic-testing-of-machine-learning-based-systems-e1fe13baf048

52/81

https://towardsdatascience.com/metamorphic-testing-of-machine-learning-based-systems-e1fe13baf048

Metamorphic Testing (2/3'

* |n summarized form:

o—SUT(Tc)

o =sSUT(TC)

SUT = System Under Test
TC = Test Case

53/81

Metamorphic Testing\é\{}\) s

Example: Suppose we have a program P that computes the shortest
path between two edges (a, b) in an undirected graph (G)
P(G,a,Db)

It is generally unfeasible to test whether the output of P is really the
shortest path

A metamorphic relation can be derived as follows: if we swap a,b the
output has to be the same

We cantestfor |[P(G,b,a)| = |P(G,a,b)|
e.g., {c,f,h, 1,3} # {c,d,e, T,h, 1,7}

See Chen, Tsong Yueh, et al. "Metamorphic testing: A review of challenges and opportunities." ACM Computing Surveys (CSUR) 51.1 (2018):
1-27. 54/81

Question Time 2, wrte—1

h \; \\./’

* Can Fuzzing and Metamorphic Testing be combined?
* What would be the advantages?

55/81

Quality of Software Tests -
Mutation Testing

55555

Estimating Software Tés’g Suite Quality

 What if we could judge the effectiveness of a test suite in finding
real faults, by measuring how well it finds seeded fake faults?

 How can seeded faults be representative of real defects?

Example: | add 100 new defects to my application
- they are exactly like real defects in every way

- | make 100 copies of my program, each with one of my 100 new
defects

| run my test suite on the programs with seeded defects ...
- ... and the tests reveal 20 of the defects

- (the other 80 program copies do not fail)

— What can | infer about my test suite?

57/81

Mutation Testing Assumptions

 Competent programmer hypothesis:

- Programs are “nearly” correct
* Real faults are small variations from the correct program
. Mutants are reasonable models of real buggy programs

* Coupling effect hypothesis:

— Tests that find simple faults also find more complex faults

* Even if mutants are not perfect representatives of real faults, a test
suite that kills mutants is good at finding real faults too

58/81

How Mutation T@sting\%FkSi@/ 3)"~ }

- Create many modified copies of the original program called mutants
Each mutant with a single variation from the original program.

By + Mutation Process: application of
;B mutation operators, such as
& ‘ statement deletions, statement

— 11 1 ': 1 —_—
E - _ml%\] modifications (e.g. != instead of ==)

‘nQQ’I Algorithm 1: Original Code

Algorithm 2: Mutated Code

- if (a == 0) then if (a !=0) then
< // do something // do something
HaV) else else
- _B // do something // do something
@&

59/81

How MutationT@sting,

- All mutants are then tested by test suites to get the percentage of
mutants failing the tests

« The failure of mutants is expected!

* |If mutants do not cause tests to fail,
they are considered live mutants

60/81

How Mutation T@sting\%hks’i@l 3)

- All mutants are then tested by test suites to get the percentage of
mutants failing the tests

« The number of live mutants can be a sign

of:
- i) tests are not sensitive enough to catch
the modified code

- i) there are equivalent mutants

e.g. original program
if (x==2 && y==2){
int z = x+y;
}

equiv mutant
Mutation Score as indication of the tests 1f (x==2 && y==2){

quality: int z = x*y;
M. = M e }
Score ™
Mtot_Meq

61/81

: ; e
Mutation Operators « - * "~

?J\s {

* Syntactic change from legal program to legal program

* Specific to each programming language. C++ mutations don’t
work for Java, Java mutations don’t work for Python

* Examples:
— crp: constant for constant replacement
e forinstance: from (x <5) to (x <12)
* select from constants found somewhere in program text
— ror: relational operator replacement
* forinstance: from (x <=5) to (x < 5)
— vie: variable initialization elimination
* change int x =5; toint x;

62/81

Problems of Mutgtion\i%\evs,’ci ng;"

- Mutation testing has not yet widely adopted for a series of reasons,
mainly:

- Performance reasons

- The equivalent mutants problem

— Missing integration tools M, .oq
- Benefits might not be immediately clear MScore:M @
tot

Equivalent mutants
problem: determining
syntactically different but
semantically equal mutant
is undecidable

63/81

Weak Mutation . . .=« *

 Problem: There are lots of mutants. Running each test case
to completion on every mutant is expensive
* Number of mutants grows with the square of program size

* Approach:
- Execute meta-mutant (with many seeded faults) together with
original program
- Mark a seeded fault as “killed” as soon as a difference in
intermediate state is found
* Without waiting for program completion
 Restart with new mutant selection after each “kill”

64/81

Statistical Mutation .« - * "~

IS

* Problem: There are lots of mutants. Running each test case
on every mutant is expensive

* It's just too expensive to create N2mutants for a program of N lines
(even if we don’t run each test case separately to completion)

* Approach: Just create a random sample of mutants

- May be just as good for assessing a test suite
* Provided we don’t design test cases to kill particular mutants

65/81

Other Optimization A!:-_oa?} “

- Selective mutation: reduce the number of active operators
selecting only the most efficient operators = produce mutants not

easy-to-kill
i
: [
@ Hm
=

- Second Order Strategies: combining more than a single mutation,
putting together First Order Mutants (different sub-strategies to

combine them)
M

=
5) = N

p |

s

66/81

sample Demo with PiTest -

pitest.org

Real world mutation testing

PIT is a state of the art mutation testing system, providing gold standard test coverage
for Java and the jvm. It's fast, scalable and integrates with modern test and build tooling.

67/81

http://pitest.org/

Risk-based Testing

68/81

Test Case Specification: “(A) A set of test inputs, execution conditions, and
expected results developed for a particular objective, such as to exercise a
particular program path or to verify compliance with a specific requirement.
(B) A document specifying inputs, predicted results, and a set of execution
“conditions for a test item”

Example:

1. Open the browser

2. Go to shopping cart page (pre-conditions: user is logged-in, no items are in the
shopping cart, the check-out button is not available)

3. Add item “x” —= exp result: i) the page is updated with the new item, ii) the

check-out button becomes available

4. Remove item “x” — exp result: i) no items are listed, ii) the check-out button
is not available

69/81

Tests Prioritization - REK Analysis

Risk analysis deals with the identification of the risks (damage and
probabilities) in the software testing process and in the prioritization of

ISO/IEC/IEEE 29119 Testing Standard from 2022 suggests to adopt Risk-

the test cases
based testing

Context }

Organize Test
Plan Development

|

Identify &
Estimate Risks

P

Identify Risk
Treatment
Approaches

v

Design Test
Strategy

v & Scheduling

Document

i Test Plan

—

Gain Consensus
on Test Plan

Determine Staffing

-

Publish
Test Plan

70/81

Steps for Risk Analysis (1/3)

1. Define the risk items (e.g. type of failures for components)
2. Define probability of occurrence

3. Estimate impact

4. Compute Risk Values

Component | Estimated Probability| Estimated Impact Computed Risk (=P *1) Rank
A 5 21 105 W 6
B 29 50 450 | ¢
C 25 10 250 I 4
D 18 46 328 2
E 14 8 112§ 5
F 13 50 ss0 I 3

M. Felderer, “Development of a Risk-Based Test Strategy and its Evaluation in Industry”, PV226 Lasaris Seminar, 3rd Nov 2016. -

Steps for RlskAnaLySi§

5. Determine Risk levels

60
@ B @
I D@ |V
°
S
E
T 30
w
£
g | ~®
| 1
E @ c®
0
0 15 30

Estimated Probability

M. Felderer, “Development of a Risk-Based Test Strategy and its Evaluation in Industry”, PV226 Lasaris Seminar, 3¢ Nov 2016.

oA
eB
eoC
eD

oE

72/81

Steps for Risk Analysis-(3/3) -

6. Definition and Refinement of Test Strategy

] . Risk level Components| A B C D F
Testing techniques Lo v| Risklevel| 1 IV 1 I
Unit testing (100% branch coverage) X X
Code reviews X X X X X X X
Manual testing of use cases (base flow) X X
Manual testing of use cases (base + alternative flows) X X X X X
Exploratory testing X X X X
Automated smoke/regression tests X X X X X
Beta test phase at selected customers X X X X X X X

M. Felderer, “Development of a Risk-Based Test Strategy and its Evaluation in Industry”, PV226 Lasaris Seminar, 3rd Nov 2016.

73/81

Functional (Black Box)
Testing

Specification-based / ,\\\g,nt:tiphal Testi ng

X \

o Functional testing: Deriving test cases from program

specifications (Functional specification = description of intended program
behavior)

e Program code is not necessary
e Functional refers to the source of information used in test case
design, not to what is tested
e Also known as:
- specification-based testing (from specifications)
- black-box testing (no view of the code)
o Functional testing is best for missing logic faults
— A common problem: Some program logic was simply forgotten

— Structural (code-based) testing will not focus on code that is
not there!

SOFTWARE TESTING
AND ANALYSIS

(c) 2007 Mauro Pezze & Michal Young

75/81

Steps: from specifications to test cases

Functional 1. Decompose the specification
Specifications

- If the specification is large, break it
! | into independently testable features
to be considered in testing

2. Select representatives

rlndependently

Testable
Feature - Representative values of each input, or
N, A
A Representative behaviors of a model
- Often simple input/output
@ @ transformations don’t describe a
- system. We use models in program
Rep:i Sientatlve Model specification, in program design, and in
alues test design
3. Form test specifications
- Typically: combinations of input values,
Test Test or model behaviors
Case Cases
Specifications 4. Produce and execute actual tests

SOFTWARE TESTING
AND ANALYSIS

(c) 2007 Mauro Pezze & Michal Young -

to test cases

Functional
Specifications

@

qndependenﬂyj
Testable
Feature

N A

LR

NOTE: this helps
Derive Independently Testable Features: identify also in determining if

features that can be tested separately there are

Examples: a search functionality on a web application requirements that
or addition of new users — this may map to different are not testable or

levels at the design and code level need to be rewritten
or clarified!

Derive Representative values OR a model that can
be used to derive test cases. Note that this phase is

Representative
Values

mostly enumeration of values in isolation. Example:
considering empty list or a one element list as
representative cases

T

Test
Case
Specifications

Generation of test case specification based on the

Test previous step, usually based on the Cartesian product
|:> =1 from the enumeration values (considering feasible

cases). Example: the search functionality,
representative values might be 0,1, many characters
and 0,1, many special characters, but the case
{O,many} is clearly impossible

77/81

Example: using cate

IS

pY

pa’fjcfi;tionih:g 1/2

Example one: using cai'@gbt‘y«partitioning

Using combinatorial testing (category partition) from the specifications.
Sample Scenario:

“We are building a catalogue of computer components in which customers can select the
different parts and assemble their PC for delivery. A model identifies a specific product

and determines a set of constraints on available components. A set of (slot, component)
pairs, corresponding to the required and optional slots of the model. A component might

be empty for optional slots” ;
Parameter Model
- Model number
— Number of required slots for selected model (#SMRS)
- Number of optional slots for selected model (#SMQOS)
Parameter Components
- Correspondence of selection with model slots
-~ Number of required components with selection # empty
- Required component selection
— Number of optional components with selection = empty
- Optional component selection
Environment element: Product database
- Number of models in database (#DBM)
- Number of components in database (#DBC)

Step 3: Introduce conquintSi-

* A combination of values for each category corresponds
to a test case specification
- in the example we have 314.928 test cases
- most of the test cases represent “impossible” cases
» Example: zero slots and at least one incompatible slot
* Introduce constraints to
- rule out impossible combinations
- reduce the size of the test suite if too large

TESTING
5is

(¢) Mauro Pezz¢ & Michal Young 2003

L

Step 2: Identify ,relevaht.Valges: components

model slots
Omitted slots
Extra slots
Mismatched slots

0

Some defaults
All valid

m > 1 not in database

‘ (c) 2007 Mauro Pezzé & Michal Young

Correspondence of selection with

Complete correspondence

Number of required components with
non empty selection

< number required slots
= number required slots

Required component selection

> 1 incompatible with slots
= 1 incompatible with another selection

> 1 incompatible with model

Number of optional
components with non empty
selection

Optional component selection
Some defaults

All valid
> 1 incompatible with slots

> 1 incompatible with another
selection

> 1 incompatible with model
> 1 not in database

(¢) Mauro Pezz¢ & Michal Young 2003

Step 3: error constra'int\. g

Model number
Malformed
Not in database
Valid

Omitted slots
Extra slots
Mismatched slots

TESTING
lis

="

[error]
[error]

[error]
[error]
[error]

Complete correspondence
Number of required comp. with non empty selection

0 [error]

< number of required slots [error]
Required comp. selection

> 1 not in database [error]

Number of models in database (#DBM)

0) [error] from 314.928 to
Number of components in database (#DBC) 2.711 test cases
0 [error]

[Error] indicates a value class that
— corresponds to erroneous values
- need be tried only once

Correspondence of selection with model slots

Error constraints
reduce test suite

(c) Mauro Pezzé & Michal Young 2003

78/81

0l

Example: using cate

Step 3: property. constraints.

Number of required slots for selected model (#SMRS) constraint [property] [if-property]
[property RSNE] rule out invalid combinations
Many [property RSNE] [property RSMANY] of values
[property] groups values of a single
Number of optional slots for selected model (#SMOS) parameter to identify subsets
[property OSNE] of values with common
Many [property OSNE] [property OSMANY] properties

Number of required comp. with non empty selection [if-property] bounds the choices of
[if RSNE] [error] values for a category that can
< number required slots [if RSNE] [error] be combined with a particular

= number required slots [if RSMANY] vatue selected for a different
category

Number of optional comp. with non empty selection
< number required slots [if OSNE]
= number required slots [if OSMANY

from 2.711 to 908
test cases

(c) Mauro Pezzé & Michal Young 2003

Step 3: single constraints

Number of required slots for selected model (#SMRS)

0 [single]
1 [property RSNE] [single]
Number of optional slots for selected model (#SMQOS)
[single]
1 [single] [property OSNE]
Required component selection
Some default [single]
Optional component selection
Some default [single]
Number of models in database (#DBM)
1 [single]
Number of components in database (#DBC)
1 [single]

TWARE TESTING

(c) Mauro Pezze & Michal Young 2003

[single] indicates a value
class that test designers
choose to test only once
to reduce the number of
test cases

from 908 to 69
test cases

Example - Summary « ,;\,.

Parameter Model
* Model number

Environment Product data base

@ (c) Mauro Pezz¢ & Michal Young 2003

- Malformed [error]
- Notin database [error]
- Valid
. Number of required slots for selected model
(#SMRS)
- 0 [single]

- 1 [property RSNE] [single] N .
- Many [property RSNE] [property RSMANY] . Required component selection

* Number of optional slots for selected model Some defaults [singie]
- Allvalid
(#SMOS)) > 1 incompatible with slots
-0 [single] > 1 incompatible with another selection
- 1 [property OSNE] [single] > 1 incompatible with model
- Many [property OSNE] [property OSMANY] > 1 not in database [error]

. Number of models in database (#DBM)

- 0 [error]
- 1 [single]
- Many
- Number of components in database (#DBC)

-0 [error]
-1 [single]

berwage Testin

0 ANALYSIS - Many

Parameter Component
Correspondence of selection with model slots

- Omitted slots [error]
- Extra slots [error]
- Mismatched slots [error]

- Complete correspondence
. # of required components (selection ., empty)

- o [if RSNE] [error]
- <number required slots [if RSNE] [error]
- =number required slots [if RSMANY]

. # of optional components (selection ., empty)
0

- <#3MOS [if OSNE]

- =#5MOS [if OSMANY]
. Optional component selection

- Some defaults [single]

- Allvalid

o =1 incompatible with slots

o z 1 incompatible with another selection

o =1 incompatible with model

] 2 1not in database [error]

79/81

— Example Two - Deriving aModel ' Example Two - Derlvr.\,

PR

Example: Deriving a4

el 28
From an informal specification: To a finite state machine: w)

Maintenance: The Maintenance function records the hi

—~ - j o
maintenance. n R . . j)
o
« If the product is covered by warranty or maintenang Multiple choices in the first pct 5 é“ el T Phon se retum
requested either by calling the maintenance toll fri step ... ﬂ‘e a“"’ : a5

by bringing the item to a designated maintenance sta
« If the maintenance is requested by phone or web site and the customer is a US or EU
resident, the item is picked

Wat for

requestat
maintenance station

pick up

Q@ Wait for Maintenance
retuming (no wdn'dnty)

or by express courier
(contractn umbe

item W]th an express courier. ... determine the pOSSIbIlIties gﬁ %, % ‘I‘

« If the maintenance contract number provided by th¢ for the next step %,,) 8° % |
the procedure for items not covered by warranty. ::> K '

« If the product is not.covered by warranty or maintenance contract, maintenance can be AL SraceR repair completed Reparcd ‘
requested only by bringing em to a maintenance station. The maintenance station !
informs the customer of the estimate the @/
customer accepts the estimate. ...andsoon ... " &

« If the customer does not accept the estimaf %‘* eﬁ&

« Small problems can be repaired directly at the maintenance station. If the malntenance “ W @'3
station cannot solve the problem, the product is sent to the maintenance regional AN (m‘ | f\
headquarters (if in US or EU) or to the maintenance main headquarters (otherwise). / headquarters) | °

< If the maintenance regional headquarters cannot solve the problem, the product is sent to | C;gm;") 5

= the maintenance main headquarters. unable to repeir \ c,,o% g H /

tenance is suspended if some components are not available. (ot US or EL) residant) on,
c) SOFTWARE TESTING component fz/,
e repaired, the product is returned to the customer. R \ amves (c) 4 -
c) 2007 Mauro Pezzé & Michal You 3 —_— \\:\; Q@ r(«;::
- - _headquarters)

(c) 2007 Mauro Pezzé & Michal Young

aModel Example Two - Deriving aModel

Example Two - Derivin

J Meaning: From state 0 to state 0
o1 0 5 4 1 0 2 to state 4 to state 1 to state 0 , -
g™ e
7 sl
TC2 0 |5 (2 |4 |5 |6 |0 i Using transition
Pa— O™ Gewen coverage: Every
4 transition between

TC3 0 |3 5 9 |6 |0 AS

states should be
traversed

by at least one test
case

TC4 0 3 5 7 5 8 |7 8 9 6 0

RepYe

Is this a thorough test suite?
How can we judge?

ack component (o 0 regc Does history matter? That

o : is the order in which we
traverse a node influences
the functionality? (e.g. see
wait for completion)

N 7
component~”
arrives (o)

SDFTWARE TESTING unati§ to repair
SOFTWARE TESTING AND RUALSIS inot US o resicent)
0 ANALYSIS N\

(c) 2007 Mauro Pezzé & Michal Young)

<80/81

(c) 2007 Mauro Pezze & Michal Young

Referfices 2, o=ttt

\
./ A
v

=

Most of the source code examples, class diagrams, etc... from [2] if not differently
stated

[1] A. Zeller, Why Programs Fail, Second Edition: A Guide to Systematic Debugging, 2
edition. Amsterdam ; Boston: Morgan Kaufmann, 2009.

[2] M. Pezze and M. Young, Software Testing And Analysis: Process, Principles And
Techniques. Hoboken, N.J.: John Wiley & Sons Inc, 2007. ==

[3] Michel Felderer, “Development of a Risk-Based Test Strategy and its Evaluation in| 22
Industry”, PV226 Lasaris Seminar, 34 Nov 2016.

[4] ISO/IEC/IEEE 29119 Software Testing Standard, downloadable from:
https://standards.iso.org/ittf/PubliclyAvailableStandards/index.html

Acceptance Testing example using Fitnesse (www.fithesse.org) @ F itNeS se
Mutation Testing example using PiTest (www.pitest.org) J

81/81

https://standards.iso.org/ittf/PubliclyAvailableStandards/index.html
http://www.fitnesse.org/
http://www.pitest.org/

