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Quality Control and Data Preprocessing

Stuart M. Brown

It is an essential part of any next-generation sequencing (NGS) experiment or core
kaboratory workflow to assess the quality of the data produced by each run of the
sequencing machine. Various quality metrics may be assessed at the run, flowcell,
lane, or sample level; these metrics provide information and may detect problems
related to sample preparation, multiplexing, mixing, and sample loading in each
lane, as well as the chemistry and optics of the sequencing machine. Some quality
control (QC) metrics may identify problems that can be corrected or ameliorated
by data cleaning procedures.

Run and lane level information is produced by the sequencing machine during
the run and may be assessed with tools such.as the Illumina Real-Time Analysis
(RTA) and Sequencing Analysis Viewer (SAV) applications:

Real Time Analysis runs locally on the instrument control computer and performs base call
and quality scoring. The analysis is performed during the chemistry and imaging cycles of a
sequencing run, which saves downstream analysis time and allows the operator to quickly
decide whether or not the run is progressing as expected... . The Sequencing Analysis Viewer
is an application that allows real-time views of important quality metrics generated by the
real-time analysis software.'

The SAV provides information about cluster density and the base quality per
cvde in each lane of the flow cell (see Fig. 1). Additional internal metrics are provided
sach as signal intensity, signal-to-noise ratio, percent of clusters for which a base is
aalled, percent of base calls that pass filter, phasing and prephasing ( percent of mol-
ecules in a cluster for which the addition of bases falls behind or jumps ahead of the
current cycle), and an error rate computed from alignment of reads from a spike-in

PhiX control.

‘From [Mumina RTA software support (http:/support.illumina.com/sequencing/sequencing software/real-
tame_analysis_rta htmt).
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FIGURE 1. illumina SAV display show'ing acurrently running sequencer run with color-coded representa-

tions of progress on individual tiles within a flow cell, cluster density, per cycle base composition, and qual-
ity score distributions,

(includes both sequencing error and single-nucleotide polymorphisms [SNPs]),
and coverage over the length of the reference sequence (primarily for polymerase
chain reaction [PCR] amplicon sequencing targets).

MULTIPLEXING

Many NGS experiments do not require the full output of a “lane” or entire flow cell
from a sequencing machine. Multiplexing is an experimental design that uses a bar
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coding scheme to tag individual samples with different adapter sequences, mix them
together in a single sequencing library, and then use bioinformatics methods to sort
out the samples by identifying the different bar codes in the output data file. Ideally,
the bar codes for different mixed samples should all differ by more than one base, so
that a single sequencing error does not result in the misclassification of a sample. For
metagenomic experiments using the 454 sequencer, Hamady et al. (2008) developed
a set of 1544 eight-base error-correcting bar codes based on Hamming distances.
The bar codes were further optimized for GC content, eliminating consecutive trip-
lets of the same base, and self-complementary sequences. Caporaso et al. (2011)
adapted the bar code scheme for Illumina MySeq and HiSeq sequencers, publishing
a list of 2167 12-base bar codes based on a Golay error-correcting algorithm, and
filtered for self-complementarity.

[llumina has developed its own bar coding system, which has some novel fea-
tures. Rather than including the bar code sequence at the end of the adpaters so
that it becomes part of the sequence read adjacent to the cloned DNA fragments,
the Illumina bar code index sequence is located a dozen or more bases upstream
on the adapter. Illumina includes an entirely separate sequencing reaction with its
own sequencing primer and reagent cycles to capture the sequence of the 8-base
bar code, which is stored in a separate sequencing data file from the information cap-
tured from the insert DNA. For paired-end sequencing, it is possible to include two
separate bar codes at each end (“dual indexed libraries”). Illumina currently (in 2014)
sells kits that allow for a total of 96 different bar code combinations to be mixed in a
single lane (12 at one end, 8 at the other). However, care must be taken when mixing a
small number of bar-coded samples. The Tllumina chemistry is sensitive to the
sequence composition at each base position, requiring at least one sample with G/T
(green laser) and one with A/C (red laser) at each base position of the bar code.
The Ilumina Experiment Manager (a stand-alone software tool to create sample
sheets) will identify bad bar code combinations (see Figs. 2 and 3).

INumina includes a demultiplexing option in both MiSeq Reporter and HiSeq
CASAVA operating software. These methods allow for one base mismatch between
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BGURE 2. lllumina bar code multiplex system includes the bar code index within the adapter. (Used with
pemession from lllumina Inc. 2008.)
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FIGURE 3. Examples of good and bad index combinations.

the sequenced bar code and the reference. Quality scores for the bar code bases are
not used. Reads are then split into separate FASTQ files for each bar coded sample.
The index sequence for the bar code is added to the end of the header line of each
read in the FASTQ file (see Fig. 4). Reads with more than one base mismatch are
dumped into a FASTQ file of “undetermined_indicies.” It may be possible to recover
some reads from this file by comparison with the set of bar codes used, but a sequenc-
ing run with lots of bad bar code reads may be unusable.

L

OTHER DEMULTIPLEXING METHODS

The metagenomics software suite Quantitative Insights into Microbial Ecology
(QIIME) has its own bar code demultiplexing program (demultiplex_fasta.py) that
operates on FASTA input files, assuming the bar code is at the beginning of each read.

FASTX-Toolkit

FASTX-Toolkit (http:/hannonlab.cshl.edu/fastx_toolkit/commandline.html#fastx_
barcode_splitter_usage) has a bar code splitter (fastx_barcode_splitter.pl) that reads
a FASTA or FASTQ input file and splits it into individual files for each bar code
with a user-specified number of allowed mismatches. The bar code séquence itself
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FIGURE 4. lllumina FASTQ format contains information in the header line for the Instrument Name, Run
number, Flowcell ID, Lane, Tile, X and Y grid position, Read quality filter, and the Bar Code Index Sequence.
(Used with permission from Illumina Casava v1.8.2 Users Guide, lllumina Inc, 2011.)
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is trimmed off from each sequence read. The bar codes can be specified at the begin-
ning or end of each read sequence. Sequence quality values are not used.

ea-utils

ea-utils (https:/code.google.com/p/ea-utils/wiki/FastqMultx) has a demultiplexing
tool for FASTQ files called FastgMultx with similar features—split FASTQ file by
bar code, allow mismatches, and trim bar code from each sequence.

Sabre

Sabre (hitps:/github.com/najoshi/sabre) is a demultiplexing tool from Najoshi (cre-
ator of Sickle and Scythe). Sabre takes an input FASTQ file and an input bar code
data file and outputs the reads demultiplexed into separate files using the file names
from the data file. The bar codes will be stripped from the reads and the quality values
of the bar code bases will also be removed. Any reads with unknown bar codes get put
mto the “unknown” file specified on the command line. The -m option allows for
mismatches in the bar codes.

SEQUENCE QUALITY

Many investigators who send samples to a collaborating laboratory, core facility, or
commercial service provider for sequencing will only receive a FASTQ file for each
sample and will not have access to SAV reports. The FastQC program (http:/www
Joinformatics.babraham.ac.uk/projects/fastqc) has become the standard method
for quality assessment of FASTQ files (or SAM/BAM files). The metrics provided
v FastQC for each data file include total number of sequences, sequence length,
ewerall %GC, a graph of per base sequence quality, mean quality per read, base com-
position and %GC along the length of all reads, mean %GC per read, per position
comnt of “N” (undetermined) bases, sequence duplication levels, overrepresented
seqmences, and overrepresented k-mer content. FastQC is available as an interactive
web-based program hosted by the Babraham Institute, or as a free downloadable Java
peogram available under the GPL v3.

Interpretation of QC metrics depends on the nature of the samples being
soqmenced, sample preparation methods, and the performance of the sequenc-
img machine. The FastQC program provides a set of green/orange/red flags that
aorrespond to good/warning/failure for specific metrics, but these warnings assume
a sample of random and diverse DNA fragments, such as a whole-genome shot-
g hibrary. Other samples, such as RNA-seq, targeted sequencing of PCR amp-
Booms, restriction enzyme digests, or fragments containing adapters internal to
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the sequencing adapters, may receive warnings, yet fully meet the goals of the
experiment.

The per base graph of Q scores produced by FastQC has become a standard rep-
resentation of sequencing quality (see Fig. 5). The x-axis represents position on the
reads and the y-axis is sequence quality on the Phred scale, where green is considered
good (Q > 28), orange moderate (28 > Q > 20), and red poor (20 > Q). Many data
sets show a decline in quality at the 3" end, which may be trimmed off to improve
overall data quality. Low-quality bases may also be observed at the 5" end. However,
a low-quality region (or single base) at any location within the central portion of the
sequence is indicative of a serious problem with the sequencing machine. The per
sequence quality graph for a good sequencing run shows a fairly tight range of overall
quality scores above Q30. A wide distribution of quality scores or a bimodal distri-
bution indicates problems sequencing some clusters, which is generally indicative
of a problem with the sequencer (imaging, flow cell chemistry, cluster amplification,

Quality scores across all bases (lllumina 1.5 encoding)
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FIGURE 5. BoxWhisker plot of per base quality produced by FastQC. In this sample, sequence quality
declines toward the 3’ end of the reads and the median sequence quality (red line) is below Q30 after
about cycle 24. This sequence data file would be unacceptable for most experiments. (From httpc//
www.bioinformatics.babraham.ac.uk/projects/fastqc/bad_sequence_fastqc.htmi, reprinted with permis-
sion from Simon Andrews.)
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etc). Similar Q-score boxplots are produced by the FASTX-Toolkit (fastq_quality_
boxplot_graph.sh) and PRINSEQ.

%GC

The overall %GC of a sample is a property of a particular organism or any other
source of the DNA sample. However, the graph of %GC may contain some interest-
ing information. An overall %GC different than expected for the target organism
could indicate a bias in the sequencing library or an issue with the sequencing
machine. A change in %GC at a particular base in the reads may indicate a problem
at a cycle in the sequencing process or a bias created during sample preparation. The
DNA fragments from a single organism are expected to form a normal distribution
of %GC. A bimdal distribution could be indicative of contamination from a differ-
ent species (e.g., bacteria in a fruit fly sample, human contamination of a microbial
metagenomic sample). (See Fig. 6.)

Quality score distribution over all sequences
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FIGURE 6. Mean sequence quality graph. The x-axis is the overall average quality value (Phred score) of
each read and the y-axis is the number of reads observed per quality level. The red line shows a sequence
quality graph of a good sample with a tight distribution of reads with Q scores > Q36 and a small tail of
low-quality sequences. The blue line shows a set of sequences with a much wider distribution of quality
scores and a distinct second peak of much lower-quality sequences, indicative of problems with the
sequencing machine. (From http://www.bioinformatics.babraham.ac.uk/projects/fastqc/bad_sequence_
fastqc.html, reprinted with permission from Simon Andrews.)
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Per Base “N” Content

DNA sequencers have traditionally used the letter “N” to represent a base that can-
not be called. This is equivalent to a quality of zero, but the use of N is helpful because
some analysis and visualization software ignores quality information. Ns occur more
frequently at the 3’ and 5’ ends of sequences. If any internal positions have more than
a few percent Ns, it is indicative of a serious problem with the operation of the
sequencer. FastQC raises a warning if any position shows >5% Ns and a failure is
reported if any position has >20% Ns.

Sequence Length Distribution

Illumina sequence reads are all the same length, which is determined by the number
of cycles of sequencing chemistry that are run. PacBio, 454, and other technologies
produce reads of variable length. The graph of sequence length distribution (fre-
quency of reads at each length) can be useful in understanding the quality of a
sequencing library and in comparing different sample data files.

Duplicate Sequences

FastQC analyzes the first 200,000 reads in each FASTQ file and compares them with
all of the sequences in the entire file to count duplicates, using an exact sequence
match over the first 50 bp of the sequence. A graph shows the sequence copy number
on the x-axis, and the y-axis represents the observed fraction of the genome that con-
tains each number of copies. A whole-genome shotgun library should have a rela-
tively low level of duplication (10%-20% is typical), so higher levels would be a
cause for concern. RNA-seq libraries generally have more duplication (30%-40%)
because highly expressed genes will be present in many copies; however, much
higher levels of duplication may be an indication that the library contains a high level
of rRNA sequences or concatemers of primer sequences. Enriched libraries such as
exon capture or ChIP-seq may have a high level of duplication because of deep cov-
erage, but bias due to PCR overamplification is also a concern. A targeted sequencing
protocol that sequences PCR amplicons will have very high duplication levels, so this
metric may not be useful.

Overrepresented Sequences

A typical whole-genome (or RNA) sequencing library will contain a diverse mixture
of fragments so that no single DNA sequence will make up more than a tiny percent-
age of the entire FASTQ file. The FastQC Overrepresented Sequences module



Quality Control and Data Preprocessing 37

identifies any sequence that makes up >0.1% of a FASTQ file. The same alignment
method is used as for the Duplicate Sequences module described above (exact
matching between the first 50 bp of the first 200,000 sequences vs. the entire file),
Any overrepresented sequences that are found are compared with a file of known
contaminants that include Hlumina sequencing adapters, PhiX sequences, human
and mouse rRNA sequences, etc.

DATA PREPROCESSING

flow that includes identification and removal of adapter sequences, removal of
low-quality sequences, trimming of low-quality ends from reads that contain regions
with high-quality bases, and removal of contaminating sequences of various types.
Quality trimming has been clearly shown to increase the quality and reliability of
de novo genome assembly, transcriptome assembly, metagenomics, gene expression
profiling with RN A-seq, and genotyping (variant detection) while reducing compu-
tational resources needed (Del Fabbro et al. 2013).

Removal of Adapter Sequences

Removal of adapter sequences is usually performed before any other sequence trim-
ming or filtering, because even low-quality sequences can be recognized as adapters,
and the presence of adapters may interfere with the identification of other types of
contaminants. Trimming of low-quality sequences first may make it more difficult
to recognize adapter sequences. Adapter contamination is often caused by sequenc-
ingofa DNA fragment that is shorter than the read length. The beginning of the read

mismatches in the alignment that may lead to false-positive detection of sequence
variants. In de novo assembly, adapter sequences can block contig assembly or cre-
ate false overlaps between unrelated sequence fragments.
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The Illumina multiplex system uses a bar code sequence located inside of the
adapters, which is read by a separate sequencing primer in a separate set of sequencing
cycles. The Illumina machine software (RTA) identifies these bar codes and demul-
tiplexes the reads into separate FASTQ files for each sample (the reads do not con-
tain the bar code sequence, but it is appended at the end of the header; see Fig. 4).
However, in some custom multiplexing systems, bar code sequences are included
downstream from the standard sequencing primer, so the bar code appears at the
5" end of the reads. Custom demultiplexing software is required to identify these
bar codes, sort the samples into separate data files, and trim off the bar code sequences.

The FASTX-Toolkit, written by Assaf Gordon in Greg Hannon’s laboratory at
Cold Spring Harbor, provides an extremely useful set of QC and data preprocessing
functions for FASTQ files including fastx_clipper for adapter removal. Fastx_clipper
recognizes and clips an adapter sequence with the option to discard sequences that
do not contain the adapter. It also has the option to discard all sequences with unde-
termined (N) bases. -

NGS QC Toolkit (Patel and Jain 2012) provides a similar set of tools. Adapter
sequences are removed based on matching (ungapped alignment) of 20-bp user-
specified adapter sequences versus 50 bp at the 5" and 3’ ends of each read, allowing
for only one base mismatch.

Trimmomatic is the most widely used adapter removal and quality trimming
program for Illumina FASTQ files, written in Java by Anthony Bolger at the Max
Planck Institute (Lohse et al. 2012; Bolger et al. 2014). Trimmomatic contains a
built-in database of known Illumina adapter sequences for Truseq2 and TruSeq3
sample kits. Additional adapter sequences can be added as FASTA sequences, but
should also include the reverse complement of each sequence. Adapters are first rec-
ognized by an ungapped seed alignment of 16-bp sections of adapter to the entire
read with a maximum mismatch of 1 or 2 bases. When the 16-bp seed alignment
matches above a threshold score, the entire adapter is aligned to the read with a
method similar to Smith-Waterman alignment.

In a paired-end sequencing run on a short insert, the same fragment will have
adapter sequences at the 3" and 5" ends of both forward and reverse reads, and the
entire insert sequence will be included in both reads, which allows Trimmomatic
to detect short adapter sequences with much greater s?xllsitivity and precision (see
Fig. 6). Trimmomatic also includes features for quality trimming using either a user-
specified sliding window (window size and average quality score cutoff) or an adap-
tive quality trim method called MaxInfo that allows the user to specify a “strictness”
value that controls a trade-off between preserving read length (maximizes total data
from the run) versus removal of incorrect bases (maximizes quality of the data).

AdapterRemoval (Lindgreen et al. 2012) is another program; it uses a similar
approach with greater sensitivity than Trimmomatic, but at the cost of greater false
positives (removal of nonadapter sequences). (See Fig. 7.)
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FIGURE 7. Trimmomatic strategy to identify adapter sequences at the end of paired-end sequence reads
with short insert size. (A) The read is entirely composed of an adapter sequence, so it is easily aligned with
the sequence in the screening database. (B) The read contains onlyashort portion of an adapter sequence,
which cannot be recognized by alignment ifit is below a detection threshold. (C) A paired-end sequencing

Scythe (Vince Buffalo 2011-2012) is a freely available Linux command line
tool on GitHub (https://github.com/najoshi/scythe). Scythe uses a naive Bayesian
approach to classify contaminant substrings in sequence reads. It considers quality
information, which can make it robust in picking out 3'-end adapters, which often
include poor-quality bases. Scythe compares the probability of two likelihood models
for the 3’ and 5 ends of each sequence: Does the sequence match the contaminant
adapter sequences (in a FASTA file) or is it a random sequence? By default, the prior
contamination rate is set at 0.05 and the minimum number of matching bases is set at
5. Scythe can be used on paired-end data, but it trims the forward and reverse reads
independently, so it does not benefit from overlap information to identify small
inserts.

Cutadapt, written by Marcel Martin (2011) at TU Dortmund University, recog-
nizes and removes adapter sequences from NGS FastQC files using a sensitive
gapped semiglobal alignment method that tolerates mismatches and indels. It has
a quality trim option to remove low-quality bases from the 3’ ends of reads before
alignment to an adapter, but it does not make use of quality scores to evaluate the
alignments. Cutadapt is written in Python and is actively maintained in 2014,
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Quality Trim

NGS data often suffer from lower quality at the 3’ end of reads and/or at the 5’ end.
Removal of low-quality reads improves alignment to the reference genome and dra-
matically reduces false-positive SNP calls (by 3x) without a noticeable loss of cover-
age on the reference genome (Del Fabbro et al. 2013). The QUAKE read correction
method identifies and removes reads that contain rare k-mers (likely sequencing
errors) and shows improved speed and quality of de novo genome assembly (Kelley
et al. 2010).

Some current de novo assemblers such as ABySS and ALLPATHS-LG incorpo-
rate data quality filters within the details of their algorithm (removing rare k-mers,
which usually contain sequencing errors, from the de Brujin graph before contig
generation). Quality filtering before assembly with these tools will have little useful
effect and may remove some data that could otherwise be used to build longer con-
tigs. In the case of RNA-seq, trimming may produce a detrimental trade-off between
sensitivity (total number of aligned reads) and specificity (number of correctly
aligned reads).

Trimmomatic removes Ns and very low-quality bases one by one from both the
3" and the 5’ sequence ends, and then a sliding window/quality function is used that
removes low-quality bases only from the 3’ end. Typical settings use a window size of
4 bases and a quality threshold of Q20 (there are no defaults), so that bases are
removed one by one from the 3’ end until the average quality within the window
is greater than or equal to the threshold.

FASTX Quality Filter throws away all reads that do not meet a specified mini-
mum average quality. Parameters are the Q-score threshold and the percentage of
bases in the read that must have quality at or above the threshold.

FASTX Quality Trimmer scans through all reads from the 5’ to the 3’ end, and when
it encounters a base with a quality score of less than the quality threshold, trims off the
rest of the read and then subsequently removes reads shorter than length threshold.

Sickle uses an adaptive window that is set to 10% of the read length (i.e., 10 bases
fora 100-bp read) and a target minimum Q value (default Q20). The window starts at
the 5" end of the read and trims bases one by one from the 5’ end until the average
quality within the window is greater than or equal to the target. Then the window
continues to slide toward the 3" end until the average quality drops below the target.
At that point all bases within the window and all remaining 3’ bases are deleted. This
is similar to using a trimming window that slides inward from both the 5’ and 3’ ends;
however, a stretch of low-quality sequences soméwhere in the middle of the read will
cause all downstream 3’ sequences to be removed.

SolexaQA finds the largest contiguous stretch of bases within each read with
bases all having quality values above a threshold (default Q13) and removes all bases
outside of that window.
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PRINSEQ provides both a downloadable (stand-alone Perl script) and a web-based
tool (http://edwards.sdsu.edu/cgi—bin/prinseq/prinseq.cgi) for quality assessment
and preprocessing of rawg sequencing data. Reads can be filtered (and discarded)
by average quality score, minimum or maximum %GC content, and maximum per-
centage of Ns. Reads can be trimmed using a sliding window of user-specified size
from the 3’ and/or 5" ends and a Q-value threshold for the average score within the
window.

Cutadapt is primarily an adapter removal tool; however, it provides a trim-
qualities parameter that is designed to remove low-quality bases from the ends of
reads before identifying adapter sequences. The trimming algorithm is the same
as the one used by BWA: Subtract a Q-value cutoff from all qualities; compute partial
sums from all indices to the end of the sequence; and cut the sequence at the index at
which the sum is minimal.

Filter Contaminating Sequences

The definition of contaminating sequences can differ in different types of NGS
experiments. In standard genome sequencing for variant detection, de novo
sequencing, or enrichment analysis (ChIP-seq or its many variants), contaminating
sequences might come from other organisms such as bacteria or viruses (sample
contaminants, laboratory contaminants, or DNA present in reagents used for sam-
ple preparation). In metagenomic analysis, contaminating sequences might be from
human, mouse, or whatever organism served as host for the microbes. In RNA-seq,
ribosomal RNA and mitochondrial RNA are considered contaminants. These
sequences are generally removed by alignment of the entire FASTQ file to a reference
or “contaminant” sequence file.

When a specific set of contaminating sequences are known to occur in an NGS
experiment, such as rRNA in RNA-seq or human DNA in metagenomics, the
FASTQ files can be preprocessed by an ad hoc strategy with a standard NGS align-
ment tool such as BWA or Bowtie using the contaminants as the reference genome.
Unmatched sequences are redirected to a new “cleaned” output file, which is used for
all subsequent analyses. The widely used MG-RAST metagenomics server uses a
Bowtie search against the human genome (or other model organisms) to filter
data in its annotation pipeline (Meyer et al. 2008).

NGS samples may contain unknown contaminating sequences from one or
many different organisms. Hadfield and Eldridge (2014) have developed a multi-
genome alignment tool (MGA) to screen for contaminants in FASTQ files. MGA
is optimized for speed so that it can be run routinely as part of a NGS data processing
pipeline for all samples produced in a sequencing facility. MGA takes a subsample of
reads (100,000 reads per lane or per FASTQ file), trims the reads to 36 bases, and
then uses Bowtie to align against a collection of genome sequences from bacteria,
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viruses, fungi, and laboratory animals. MGA also screens for adapter contamination
by more sensitive alignment to a set of adapter and primer sequences using the Exon-
erate sequence alignment tool (Slater and Birney 2005). This is run using a local
alignment model with affine gaps, similar to the Smith-Waterman-Gotoh algo-
rithm (Smith and Waterman 1981; Gotoh 1982). The result of MGA screening is
an easy-to-read graphical report that identifies contamination, but it does not pro-
duce a clean data file with contaminating sequences removed.

DeconSeq Human Contaminant Filter

The Human Microbiome Project generated large data sets of 16S ribosomal DNA
(rDNA) amplicons and shotgun metagenomic data from samples associated with
the human body (skin, oral, fecal, nasal, vaginal, etc.) that contained widely varying
amounts of human DNA. Because the goal of the project was to make microbiome
data sets widely available for reanalysis by many researchers, and the research sub-
jects did not consent to make their own personal genomes public, the samples must
be filtered for contaminating human DNA. The extremely large amount of DNA
data made the use of BLAST impractical. The DeconSeq program was developed
to meet the needs of this project (Schmieder and Edwards 2011). DeconSeq uses
BWA-SW (Burrows-Wheeler Aligner) to find short, nearly exact matches between
NGS reads and the human reference genome (or any other reference genome
installed by the user) using a combination of high percent identity (default = 94%)
and read coverage (how much of the read is similar to the reference sequence, default
=90%). DeconSeq is available as stand-alone source code (Perl scripts and modified
BWA code) freely distributed under GPL3 and as a web application (http://edwards
.sdsu.edu/cgi-bin/deconseq/deconseq.cgi).

The Human Microbiome Project (HMP) also developed the Best Match Tagger
(BMTagger) to computationally filter the human sequence from microbial whole-
genome shotgun (WGS) sequences. BMTagger is a heuristic tool that discriminates
between human reads and microbial reads without doing an alignment of all reads to
the human genome. The algorithm discriminates between human reads and micro-
bial reads by comparing consecutive sequences of 18-mer-length nucleotides found
in the sequence reads with those found in the human genome. Reads are sorted into
three classes: Those that contain few consecutive human-matching 18-mers (<10%
of the read) are tagged as nonhuman, those that contain >80% matching 18-mers are
tagged as human, and those with an intermediate amount of matching 18-mers are
tagged as undetermined and further tested by an alignment procedure called srprism
that guarantees to find matches with up to two errors in reads that are at least 32 bp
long. The BMTagger has been adopted as standard operating procedure (SOP)
for human contaminant screening of metagenomic data for the HMP (http://www
‘hmpdacc.org/doc/HumanSequenceRemoval_SOP.pdf) and it has been incorporated
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in the CloVR virtual machine, which is available on the academic DIAG cloud and
the Amazon EC2 commerctl service (Angiuoli et al. 2011).

SOP RECOMMENDATIONS

Overall QC Evaluation: FastQC

FastQC provides a comprehensive selection of quality metrics on raw FASTQ files
with easy-to-read graphical output.

Adapter Removal: Trimmomatic

Adapter removal is essential for all types of NGS data analysis. Trimmomatic has a
superior algorithm for paired-end data to detect adapter contamination of NGS
reads in FASTQ files caused by small insert size. It is widely used by de novo genome
sequencing projects and highly cited (113 Google Scholar citations).

Quality Trimming

Removal of uncalled “N” bases from sequence ends and of reads containing large
numbers of Ns is beneficial. Quality trimming is not always essential or beneficial
for de novo assembly or RNA-seq applications when assemblers and aligners
have built-in quality filtering methods. Trimming with moderate quality thresh-
olds (Q10 to Q20) is recommended for de novo assembly. Trimming is not
advised before RNA-seq alignment with TopHat. Trimming greatly improves
genotyping/variant detection pipelines by reducing false positives, so a higher-
quality threshold (Q20 to Q30) may be beneficial. Quality thresholds should
be adjusted to ensure that the majority of the data set is included in the high-
quality fraction.
A preprocessing workflow recommended in the Trimmomatic manual is as
follows:
= Remove lllumina adapters provided in the TruSeq3-PE.fa file (provided). Ini-
tially Trimmomatic will look for seed matches (16 bases) allowing maximally
two mismatches. These seeds will be extended and clipped if in the case of
paired-end reads a score of 30 is reached (about 50 bases), or in the case of single-
ended reads a score of 10 (about 17 bases).

+ Remove leading low-quality or N bases (below quality 3).
+ Remove trailing low-quality or N bases (below quality 3).
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* Scan the read with a 4-base-wide sliding window, cutting when the average qual-
ity per base drops below 15.

*» Drop reads that are <36 bases long after these steps.
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