IoT Security

Spring 2024

Karel Slavicek Vaclav Oujezsky Bacem Mbarek Tomas Pitner

Lesson outline

- Aim and goal
- Content and scope of the lecture
- Lecture organization
- Evaluation

Aim and goal

- Discuss IoT systems security
- Overview of IoT HW used to protect other resources
- Vulnerabilities of communication busses and protocols commonly used in IoT systems
- IoT and cryptography

Prerequisities

- Basic knowledge of
 - computer architecture
 - operating systems
 - OS Linux
- ABC of programming in C/C++
- ABC of communication and cryptography is advantage

Content and scope of the lecture

- Focus on lab exercises and hands-on experience
- Lessons for a global overview
- Minimizing the obligatory stuff
- Flexibility in lab design
- Students' qualification theses upon request

What this course is about

- Basic properties of IoT devices used for security applications
- Overview of both internal and external busses and its vulnerabilities
- Cryptography support for IoT

What this course is NOT about

- Physics of the sensors
 - Department of physics at Faculty of Sciences
- Electronics design
 - Faculty of Electrical Engineering and Communication Technology

Lessons

- 13 weeks of spring term
- 12 lessons + 1 spare
- Up to 10 technical lesson + 2 special invited lectures / visit at industrial partners
- New lessons and lecturers please be tolerant to some deficiencies in formal side of the lecture

Lab exercises

- 1 introductory + 10 regular + OpenLab days
- All necessary SW installed on PCs in KYPO, students own devices supported as well
- Overview of available HW in lab exercises
- Number of participants on lab exercise limited by room size and number of equipment – currently not an issue
- Few times, our room for lab exercises might be occupied by other event – reschedule or cancellation

Studying material on the web (is.muni.cz + gitlab)

- Slides from presentations
- IDE and supportive SW
- Sample code
- Description and schematics of used HW

Evaluation

- Colloquium
- Standalone projects optionally solved in groups
- Projects will be discussed during the colloquium

Any questions / comments / requirements ?

Summary from the Introduction to IoT

What is it the IoT?

Structure of an IoT System

Structure of an IoT System

Elementary sensors

- Fingerprint scanner
- RFID/NFC card readers
- Push buttons and switches
- Rotary encoder
- Temperature
- Humidity
- Barometric pressure
- Proximity

Output devices

- LED diodes and 7-segment displays
- LCD displays
- OLED
- TFT and capacitive touch screens
- E-paper

Local Data Storage

- uSD
- EEPROM
- FLASH
- eMMC

Internal busses

- 12C
- SPI
- 1-Wire
- UART

MCUs and Singleboard Computers

- Bare metal programmable
 - ARM Cortex M STM32, EFM32, ...
 - AtMega (Arduino)
 - AtTiny
 - MSP430
 - ESP-32
- Singleboard Computers
 - Raspberry Pi
 - Rock Pi
 - Orange Pi
 - Anything Pi

External busses

- RS-485 / MODBUS
- CANBUS
- M-Bus
- FlexRay
- UART

Wireless communication

- WiFi
- Bluetooth
- Sub-Ghz wireless 868MHz, 433MHz / SigFox, LoRa,
 ...
- InfraRed communication

Communication busses

- Similarity with data networks
- ISO-OSI reference model
- Multiple layers: RS-485 / MODBUS

•

- Eavesdropping
- Fake data

Course plan

- Fingerprint scanner
- RFID/NFC
- DLT, cryptographic algorithms and chips
- LoRa WAN
- Eavesdropping of communication busses

Thank for your attention!

Questions and comments?