IoT Security

Spring 2024

Karel Slavicek Vaclav Oujezsky Bacem Mbarek Tomas Pitner

Outline

- Smart cards
 - History
 - Protocols
 - Utilization
 - Hardware

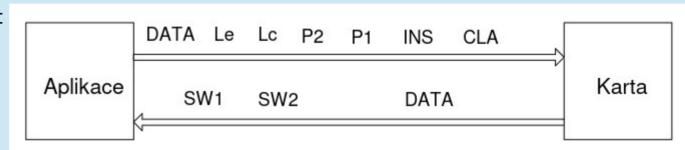
Smart card types

- Memory cards
- Crypto cards

- Contact cards
- Contactless cards

Contact smart cards

- SIM (Subscriber Identity Module)
- Bank cards
- Pre-payed telephone cards


Contact smart cards

- Standards ISO/IEC 7816:
 - ISO 7816-1 Physical characteristics: dimesions, thicness, flexibility, ...
 - ISO 7816-2 chip and contacts locations, ...
 - ISO 7816-3 Electrics parameters: volatage, current, ...
 - ISO 7816-4 communication protocol,
 APDU, ...

APDU

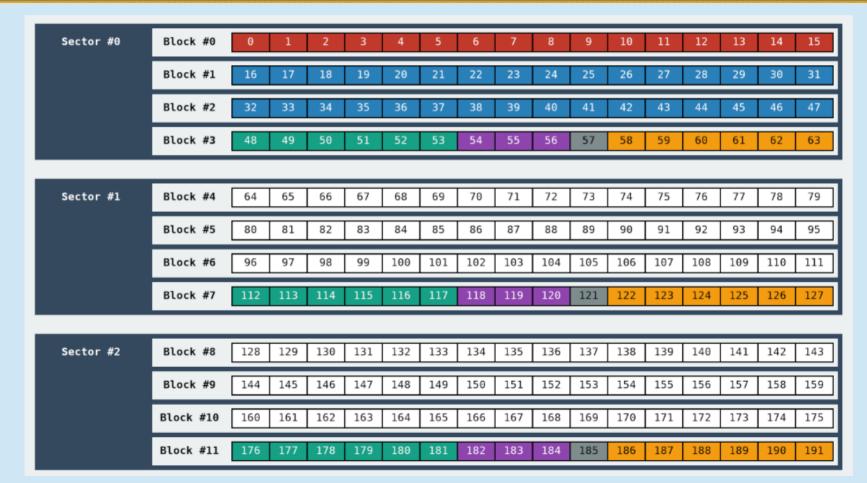
Application Protocol Data Unit

- CLA Instruction class: 0x00 standard, 0x08 proprietary
- INS Instruction code
- P1, P2 Instruction parameters
- Lc Instruction data length
- Le Expected response data length
- DATA Data
- SW1, SW2 Return codes

Contactless smart cards

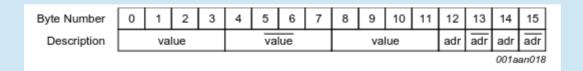
- ISO/IEC 14443:
 - ISO/IEC 14443-1:2018 Part 1: Physical characteristic
 - ISO/IEC 14443-2:2020 Part 2: Radio frequency power and signal interface
 - ISO/IEC 14443-3:2018 Part 3: Initialization and anticollision
 - ISO/IEC 14443-4:2018 Part 4: Transmission protocol
- ISO/IEC 15693 for longer distances

Contactless smart cards


- RFID (Radio Frequency Identification)
- Arbitrary frequency and distance

- Low Frequency = 125 kHz original RFID
- High Frequency = 13.56 MHz NFC proximity
- Ultra High Frequency = 868 MHz + 2.4 GHz industrial applications

Smart card – data organization


- Sectors of 4 Blocks
- Each block = 16 bytes
- Number of blocks according to memory size
- First block: Manufacturer data
 - 4B / 7B UID
 - Rest of block proprietary
 - Read only

Smart card - data organization

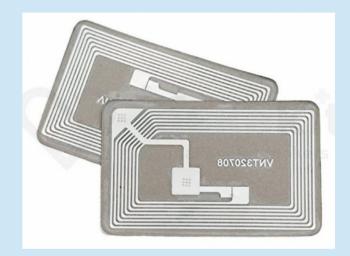
Smart card – data organization

- MIFARE Classic EV1:
 - read/write block
 - Value block
- Value Block (1 and 2 in sector 0, 0-3 otherwise)
- 4 Byte value, stored 3 times, once complementary
- Address 1-Byte, stored 4 times

Smart card – data organization

Trailer block

Access Bits:


Access Bits	Valid Commands		Block	Description
C1 ₃ , C2 ₃ , C3 ₃	read, write	\rightarrow	3	sector trailer
C1 ₂ , C2 ₂ , C3 ₂	read, write, increment, decrement, transfer, restore	\rightarrow	2	data block
C1 ₁ , C2 ₁ , C3 ₁	read, write, increment, decrement, transfer, restore	\rightarrow	1	data block
C1 ₀ ,C2 ₀ , C3 ₀	read, write, increment, decrement, transfer, restore	\rightarrow	0	data block

Smart card - Memory operations

Operati on	Description	Block type
Read	reads one memory block	read/write, value, and sector trailer
Write	writes one memory block	read/write, value, and sector trailer
Increment	increments the contents of a block and stores the result in the internal Transfer Buffer	value
Decrement	increments the contents of a block and stores the result in the internal Transfer Buffer	value
Transfer	writes the contents of the internal Transfer Buffer to a block	read/write, value
Restore	reads the contents of a block into the	value

Hardware

- Main smart cards manufacturer: NXP
 - MIFARE
 - NTAG213/215/216

- Main card readers manufacturer: NXP
 - RC522 (MFRC522)
 - PN532

MIFARE

 MIFARE Classic - Proprietary protocol compliant with ISO/IEC 14443 1-3 Type A, NXP proprietary security protocol Crypto1

Subtypes: MIFARE Classic EV1

 MIFARE Plus - Replacement for MIFARE Classic with cAES-128 based security, backwards compatible with MIFARE Classic.

Subtypes: MIFARE Plus S, MIFARE Plus X, MIFARE Plus SE and MIFARE Plus EV2.

 MIFARE Ultralight - Low-cost solution for high volume applications (public transport, loyalty cards, event ticketing)

Subtypes: MIFARE Ultralight C, MIFARE Ultralight EV1, MIFARE Ultralight Nano and MIFARE Ultralight AES.

 MIFARE DESFire - Compliant with parts 3 and 4 of ISO/IEC 14443-4 Type A. Mask-ROM operating system from NXP.

Subtypes: MIFARE DESFire EV1, MIFARE DESFire EV2, MIFARE DESFire EV3 and MIFARE DESFire Light.

MIFARE Competitors

- HID Global :
 - iCLASS
 - MIFARE DESFire EV3
 - HITAG
- SONY:
 - FeliCa mainly in Japan

Thank for your attention!

Questions and comments?