
www.crcs.cz/rsa @CRoCS_MUNI

PV286 - Secure coding principles and

practices

Security Code Review

Łukasz Chmielewski chmiel@fi.muni.cz (email me with your questions/feedback)

Centre for Research on Cryptography and Security, Masaryk University

mailto:chmiel@fi.muni.cz

www.crcs.cz/rsa @CRoCS_MUNI

Organizational Aspects

• Since there is only a video lecture, in case of questions:

– Email me chmiel@fi.muni.cz or

– Consultations are not Friday 9.30 – 11.00 in A406.

– The video from 2023 is uploaded just next to this presentation.

• Questionnaire will be open on Tuesday evening and it will remain

open till the end of Tuesday next week (23.59 on 14/05)

• For people following PA193 seminars:

– Please watch the lecture before your seminar

2 PV286 | Secure API, Automata-based programming

www.crcs.cz/rsa @CRoCS_MUNI

PROBLEM

3 | PV286 - Security Code Review

www.crcs.cz/rsa @CRoCS_MUNI

Example problem – Debian RNG flaw

• Linus’s law

– “Given enough eyeballs, all bugs are shallow”

– https://en.wikipedia.org/wiki/Linus%27_Law

• Flaw in Debian’s random number generator (2008)

– CVE-2008-0166

– http://www.debian.org/security/2008/dsa-1571

– lead to predictable random numbers

– improper change to OpenSSL random generator

– persisted for almost two years!

– lead to only 262148 possible openSSH keys

• Change made based on static and dynamic analysis tools recommendation!

4 | PV286 - Security Code Review

https://en.wikipedia.org/wiki/Linus'_Law

www.crcs.cz/rsa @CRoCS_MUNI

Debian RNG flaw

• Valgrind and IBM’s Purify reports problems

– usage of uninitialized variable

– OpenSSL crypto/rand/md_rand.c

• Discussion of maintainers (before and after change)

– http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=363516

5 | PV286 - Security Code Review

MD_Update(&m,buf,j);
MD_Update(&m,buf,j); /* purify complains */

http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=363516

www.crcs.cz/rsa @CRoCS_MUNI

Fatal mistake

6 | PV286 - Security Code Review

www.crcs.cz/rsa @CRoCS_MUNI

Morale

• Access to source code doesn’t guarantee bug-free code

• Usage of automated tools can provide great advantage, but deep

understanding of code before change must remain

• Manual code review eventually spotted the problem

7 | PV286 - Security Code Review

www.crcs.cz/rsa @CRoCS_MUNI

Why to perform source code review?

8 | PV286 - Security Code Review

www.crcs.cz/rsa @CRoCS_MUNI

SECURITY CODE REVIEW

9 | PV286 - Security Code Review

www.crcs.cz/rsa @CRoCS_MUNI

Resources

• Review process and techniques are extensively based on the

excellent book “The Art of Software Security Assessment: Identifying

and Preventing Software Vulnerabilities” by Mark Dowd,

John McDonald, Justin Schuh

• Book is available in faculty library

10 | PV286 - Security Code Review

www.crcs.cz/rsa @CRoCS_MUNI| PV286 - Security Code Review

Security code review

• Architecture overview

– Design choices and possible design flaws

• Code review

– How well is architecture actually implemented

• Whitebox, greybox & blackbox testing

– different level of access to code and documentation

• Available tools

– mainly for code review

• Certifications

– Independent labs

11

www.crcs.cz/rsa @CRoCS_MUNI

Application review phases

1. Pre-assessment

2. Application review

3. Documentation and analysis

4. Remediation support

12 | PV286 - Security Code Review

www.crcs.cz/rsa @CRoCS_MUNI

Timeline

• Good reviewer ranges between 100 to 1,000 lines of code an hour

– highly dependent also on code complexity

– flexibility must be allowed

• Keep track of your previous progress

– and get feeling for your speed

– helping you making better future estimations

13 | PV286 - Security Code Review

www.crcs.cz/rsa @CRoCS_MUNI

Information Collection

• Developer interviews

• Developer documentation

• Standards documentation

• Source profiling

• System profiling

• Reports from previous reviews

• History of changes

– For example, git log

14 | PV286 - Security Code Review

www.crcs.cz/rsa @CRoCS_MUNI

Common problems

• Design documentation not available at all

• Design documentation is outdated

• Third party components without documentation

• Developers not available or not cooperating

• Limited time for everything

15 | PV286 - Security Code Review

www.crcs.cz/rsa @CRoCS_MUNI

Iterative process

1. Plan your next work

2. Perform auditing strategy you selected

– and make extensive notes

3. Reflect on time spend

– what you have learned

4. Repeat from step 1.

16 | PV286 - Security Code Review

www.crcs.cz/rsa @CRoCS_MUNI

Top-down approach

• Top-down approach

– water-fall like approach

– start from design specification

– establish threat model

– find design vulnerabilities first

– find logical implementation vulnerabilities second

– find low-level implementation bugs third

• Good results if design documentation is accurate

– but that is usually not the case

– something is missing or implemented differently

17 | PV286 - Security Code Review

www.crcs.cz/rsa @CRoCS_MUNI

Bottom-up approach

• Bottom-up approach

– starts with implementation

– targets low-level implementation vulnerabilities first

• e.g., by automated tools

– higher-level threat and design documentation later

• when understanding of application is much better

• Works well even if design documentation is not accurate

– but is slow as you need to read a lot of code that is NOT security relevant

• Necessity for maintaining design model continuously

– e.g., DFD sketches and class diagrams

18 | PV286 - Security Code Review

www.crcs.cz/rsa @CRoCS_MUNI

Hybrid approach

• Combination of top-down and bottom-up approaches

• Focus on high-level characteristics

– General application purpose

– Assets and entry points

– Components and modules

– Inter-module relations

– Fundamental security

– Major trust boundaries

19 | PV286 - Security Code Review

www.crcs.cz/rsa @CRoCS_MUNI

Verify the progress you are making

Ask often following questions:

• What have you learned about the application?

• Are you focusing on the most security-relevant components?

• Have you gotten stuck on real problem or gone down some rabbit

hole?

20 | PV286 - Security Code Review

The Art of Software Security Assessment: Identifying and Preventing Software Vulnerabilities

www.crcs.cz/rsa @CRoCS_MUNI

Verify the progress you are making (cont.)

Ask often following questions:

• Does your master ideas list have many plausible entries?

• Have you been taking adequate notes and recorded enough detail

for review purposes?

• If you're working from application models and documentation, do

these models reflect the implementation accurately?

21 | PV286 - Security Code Review

The Art of Software Security Assessment: Identifying and Preventing Software Vulnerabilities

www.crcs.cz/rsa @CRoCS_MUNI| PV286 - Security Code Review

Security code review - hints

• You will always have a limited time

– try to rapidly build overall picture

– use tools to find low hanging fruit

• Focus on most sensitive and problematic areas

– use tools to focus your analysis scope

• More eyes can spot more problems

– experts on different areas

• It’s creative process

– be pragmatic, flexible, and results driven

• Have the rights skills

– you should know programming as well as have security mindset

22

www.crcs.cz/rsa @CRoCS_MUNI

Present results (Finding summary)

• Location of the vulnerability

• Vulnerability class

• Vulnerability description

• Prerequisites (for exploiting vulnerability)

• Business impact (on assets)

• Remediation (how to fix)

• Risk

• Severity

• Probability

23 | PV286 - Security Code Review

www.crcs.cz/rsa @CRoCS_MUNI

Finding summary - example

24 | PV286 - Security Code Review

Problem identification: DSA-1571-1 openssl

Severity: critical

Risk: high - directly exploitable by external attacker

Problem description: crypto/rand/md_rand.c:276 & 473 – The random number

generator in Debian's openssl package is predictable. This is caused by an

incorrect Debian-specific change to the openssl package. One of the sources of

a randomness based on usage of uninitialized buffer buff is removed.

Remediation: revert back to usage of uninitialized buffer buff

www.crcs.cz/rsa @CRoCS_MUNI| PV286 - Security Code Review

Architecture review

www.crcs.cz/rsa @CRoCS_MUNI| PV286 - Security Code Review

Architecture overview

• Get all information you can quickly

• Assets
– What has the value in the system?

– What damage is caused when successfully attacked?

– What mechanisms are used to protect assets?

• Roles
– Who has access to what?

– What credentials needs to be presented?

• Thread model
– What is expected to do harm?

– What are you defending against?

26

www.crcs.cz/rsa @CRoCS_MUNI| PV286 - Security Code Review

Architecture review (2)

• Usage of well-established techniques and standards

• Comparison with existing schemes

– What is the advantage of new scheme?

– Why changes were made?

• Security tradeoffs documented

– Possible threat, but unmitigated?

– Is documented or overlooked?

• Hint: always search for debug features…

– how they are disabled / turned off

27

www.crcs.cz/rsa @CRoCS_MUNI| PV286 - Security Code Review

Sensitive data flow mapping

• Identify sensitive data

– password, key, protected data...

• Find all processing functions

– and focus on them

• Create data flow between functions

– e.g. Doxygen call graph

• Inspect when functions can be called

– Is key initialized?

– Can be function called without previous function calls?

• Where are sensitive data stored between calls?

28

www.crcs.cz/rsa @CRoCS_MUNI| PV286 - Security Code Review

Protocol design (and implementation)

• Packet confidentiality, integrity and authenticity

• Packet removal/insertion detection

• Replay attack

• Reflection attack

• Man in the middle

29

www.crcs.cz/rsa @CRoCS_MUNI| PV286 - Security Code Review

Cryptography usage

• CIA (Confidentiality, Integrity, Availability)
– Plaintext data over insecure channel? Encrypted only?

– Can be packet send twice (replay)?

– What is the application response on data modification?

• What algorithms are used
– Broken/insecure algorithms? MD5? simple DES?

• What key lengths are used?
– < 90 bits symmetric crypto?

– < 1024 bits asymmetric crypto?

• Random number generation
– Where the key comes from?

– Is source entropic enough?

– srand() & rand()?

30

www.crcs.cz/rsa @CRoCS_MUNI| PV286 - Security Code Review

Cryptography usage (2)

• Key creation

– Where the keys originate? Enough entropy?

– Who has access?

• Key storage

– Hard-coded keys

– Keys in files in plaintext

– Keys over insecure channels

– Keys protected by less secure keys

– Key in Trusted Elements / Hardware

• Key destruction

– How are keys erased from memory?

– Can exception prevent key erase?

31

www.crcs.cz/rsa @CRoCS_MUNI| PV286 - Security Code Review

Cryptography implementation

• Implementation from well known libraries?

• Own algorithms?

– security by obscurity?

– usually not secure enough

• Own modifications?

– Why?

– sometimes used to prevent compatible programs

– decreased number of rounds?

– Performance optimization with security impact?

32

www.crcs.cz/rsa @CRoCS_MUNI

CODE INSPECTION

33 | PV286 - Security Code Review

www.crcs.cz/rsa @CRoCS_MUNI

Example process
1. Start review by suite of static analysis tools

– approximately up to 40-50% of software bugs can be found

– but incapable of finding application flaws and business logic vulns.

2. Results used to create prioritized list for human review

– security mechanisms to review

– potential security vulnerabilities to investigate

3. Manual inspection of issues in prioritized list

– use and abuse cases

– various code inspection strategies

4. Threat modeling used for large codebases (>100k loc)

– inspect impact of generally high-risk threat on application

• https://web.archive.org/web/20150329111329/https://www.praetorian.com/campaign/software-

security/security-code-review.html

34 | PV286 - Security Code Review

https://web.archive.org/web/20150329111329/https:/www.praetorian.com/campaign/software-security/security-code-review.html
https://web.archive.org/web/20150329111329/https:/www.praetorian.com/campaign/software-security/security-code-review.html

www.crcs.cz/rsa @CRoCS_MUNI

Code navigation

• Control-flow sensitive navigation

– follow function calls

– e.g., what parts of program are reachable from set of functions callable without previous

authentication?

• Data-flow sensitive navigation

– follow flows of interesting data

– e.g., password from input to verification and storage

– See for example: https://codeql.github.com/docs/writing-codeql-queries/about-data-flow-analysis/

• Code navigation tools provide great help

– call graphs (Doxygen, Performance profilers)

– tainted values (e.g., taintgrind)

– ...

35 | PV286 - Security Code Review

https://codeql.github.com/docs/writing-codeql-queries/about-data-flow-analysis/

www.crcs.cz/rsa @CRoCS_MUNI

Code auditing strategies

• Code comprehension (CC) strategies

– analysing the source code directly to discover vulnerabilities

• Candidate point (CP) strategies

– create a list of potential issues (via some mechanism)

– examine the source code for relevance of these issues

• Design generalization (DG) strategies

– reviewing the implementation and inferring higher-level design abstractions

– medium- to high-level logic and design flaws

36 | PV286 - Security Code Review

www.crcs.cz/rsa @CRoCS_MUNI| PV286 - Security Code Review

Code comprehension (CC) strategies

www.crcs.cz/rsa @CRoCS_MUNI

CC strategy - Trace Malicious Input

• Start at entry point to the system

– e.g., user input

• Trace flow of code forward with data flow analysis

– functions processing user input

• Set of possible “bad” inputs is created

– e.g., escaped shell command

• Code is examined for potential security issue

– where is user input “executed”?

38 | PV286 - Security Code Review

www.crcs.cz/rsa @CRoCS_MUNI

Trace Malicious Input - characteristics

39 | PV286 - Security Code Review

The Art of Software Security Assessment: Identifying and Preventing Software Vulnerabilities

www.crcs.cz/rsa @CRoCS_MUNI

CC strategy - Analyse Module & Algorithm

• Reading the code line by line from the beginning

• Do not follow function calls

• Writing down potential issues spotted

• Algorithm analysis is similar to module analysis, but module

implementation is usually longer

• Effective, if the code is not too long, but mentally exhausting

– overlooked problems after some time, time-demanding

40 | PV286 - Security Code Review

www.crcs.cz/rsa @CRoCS_MUNI

Analyse a Module - characteristics

41 | PV286 - Security Code Review

The Art of Software Security Assessment: Identifying and Preventing Software Vulnerabilities

www.crcs.cz/rsa @CRoCS_MUNI

CC strategy – other useful strategies

• Analyse a Class or Object

– implementation of small unit

• Trace Black Box Hits

– focus on areas where fuzzers etc. found problems

– e.g., by debugging with value used to crash application

• Automated Source Analysis Tool

– used to generate candidate points

42 | PV286 - Security Code Review

www.crcs.cz/rsa @CRoCS_MUNI

CANDIDATE POINTS (CP) STRATEGIES

43 | PV286 - Security Code Review

www.crcs.cz/rsa @CRoCS_MUNI

Candidate points strategies

1. Use some tool or process for identifying candidate points

2. Deeper follow-up inspection by other (e.g., CC) strategy

• Simple Lexical Candidate Points

– patterns of common vulnerabilities (full text search, grep-like tool)

– deprecated functions (e.g., gets), strings like “key”, “password”...

– static analysis tools, e.g., Cppcheck rules

44 | PV286 - Security Code Review

www.crcs.cz/rsa @CRoCS_MUNI

Candidate points strategies

• Simple Binary Candidate Points

– generate candidate points from binary only (unavailable source code)

– list or search for specific strings in binary

– search for interesting system calls

– use disassembling, or binary debugging

• Application-Specific Candidate Points

– patterns of mistakes for particular application

– learned from previous code/binary analysis

– e.g., new rule for Cppcheck

45 | PV286 - Security Code Review

www.crcs.cz/rsa @CRoCS_MUNI

TOOLS

46 | PV286 - Security Code Review

www.crcs.cz/rsa @CRoCS_MUNI

Handy tools

• Syntax highlighting, full text search

– any reasonable editor

• Regular expression tools (grep)

– allow for more complex searches

• Automatic generation of call graphs

– Doxygen, Visual Studio and many other tools

47 | PV286 - Security Code Review

www.crcs.cz/rsa @CRoCS_MUNI

Handy tools

• Static and dynamic analyzers

– detect multiple issues

– annotations (e.g., SAL) will help even further

• Fuzzing tools

– behavior under stress, error messages...

• Mind-mapping software

– build and do not forget information you got

• Tools to find different instances of existing issues

– CodeQL

• Pen&Pencil

– still of great help (flexible)

48 | PV286 - Security Code Review

www.crcs.cz/rsa @CRoCS_MUNI

ANTI-PATTERNS

49 | PV286 - Security Code Review

www.crcs.cz/rsa @CRoCS_MUNI| PV286 - Security Code Review

(Security) Antipatterns

• Common defective process and implementation within organization

• Opposite to design patterns

– see http://sourcemaking.com/design_patterns

• Read http://sourcemaking.com/antipatterns

– good description, examples and how to solve

– not limited to object oriented programming!

50

http://sourcemaking.com/design_patterns
http://sourcemaking.com/antipatterns

www.crcs.cz/rsa @CRoCS_MUNI

Security anti-patterns

• Software development anti-patterns

– http://sourcemaking.com/antipatterns/software-development-antipatterns

• Tesco password handling

– http://www.troyhunt.com/2012/07/lessons-in-website-security-anti.html

• Critique of some usages of OAuth

– http://adactio.com/journal/1357/

51 | PV286 - Security Code Review

http://sourcemaking.com/antipatterns/software-development-antipatterns
http://www.troyhunt.com/2012/07/lessons-in-website-security-anti.html
http://adactio.com/journal/1357/

www.crcs.cz/rsa @CRoCS_MUNI| PV286 - Security Code Review

Practical & Commercial Considerations

52

• Source Review in Certifications:

– Common Criteria, Composite Evaluations:

• https://www.commoncriteriaportal.org/iccc/7iccc/t2/t2201000.pdf

– Platform / Chipset Security Evaluation for DRM

– Riscure Assurance Levels (also a form of multi-staged evaluation)

• https://www.riscure.com/service/riscure-assurance-premium-content/

• Code Coverage

– Use Cases: boot code vs. operating system (e.g. smartcard vs. android) vs. application

– Metrics: issues per lines of code

• Types of issues: logical vs. side-channel issues

– What about timing and microarchitectural attacks?

• Hint: look at connections between hardware and software, for example:

– Initialization of trusted hardware components (e.g., TEE)

– Debug Interfaces, e.g., JTAG

https://www.commoncriteriaportal.org/iccc/7iccc/t2/t2201000.pdf
https://www.riscure.com/service/riscure-assurance-premium-content/

www.crcs.cz/rsa @CRoCS_MUNI

CONCLUSIONS & READING

53 | PV286 - Security Code Review

www.crcs.cz/rsa @CRoCS_MUNI

Recommended reading

• Process of security code review

– https://ieeexplore.ieee.org/document/1668009

• Software Security Code Review

– https://web.archive.org/web/20100208065233/http://www.softwaremag.com/l.cfm?doc=2005-07/2005-
07code

• Performing security Review (Microsoft)

– https://web.archive.org/web/20141023191707/http://silverstr.ufies.org:80/blog/msdn-webcast-code-

review.pdf

• SDL security code review process (MS Security Push)
– http://msdn.microsoft.com/en-us/library/cc307418.aspx

• OWASP security review

– https://www.owasp.org/index.php/Security_Code_Review_in_the_SDLC

• On the effectiveness of code review

– https://mfinifter.github.io/papers/coderev-essos13.pdf

54 | PV286 - Security Code Review

https://ieeexplore.ieee.org/document/1668009
https://web.archive.org/web/20100208065233/http:/www.softwaremag.com/l.cfm?doc=2005-07/2005-07code
https://web.archive.org/web/20100208065233/http:/www.softwaremag.com/l.cfm?doc=2005-07/2005-07code
https://web.archive.org/web/20141023191707/http:/silverstr.ufies.org:80/blog/msdn-webcast-code-review.pdf
https://web.archive.org/web/20141023191707/http:/silverstr.ufies.org:80/blog/msdn-webcast-code-review.pdf
http://msdn.microsoft.com/en-us/library/cc307418.aspx
https://www.owasp.org/index.php/Security_Code_Review_in_the_SDLC
https://mfinifter.github.io/papers/coderev-essos13.pdf

www.crcs.cz/rsa @CRoCS_MUNI| PV286 - Security Code Review

Recommended reading

• Why cryptosystems fail, R. Anderson
– http://www.cl.cam.ac.uk/~rja14/Papers/wcf.pdf

• Static code analysis tools
– http://en.wikipedia.org/wiki/List_of_tools_for_static_code_analysis

• Security in web applications (OWASP)
– https://web.archive.org/web/20190821204156/http://www.owasp.org/index.php/Code_Revie

w_Introduction

• How to find 5 RCEs in Apache Struts with CodeQL
– https://securitylab.github.com/research/apache-struts-CVE-2018-11776/

55

http://www.cl.cam.ac.uk/~rja14/Papers/wcf.pdf
http://en.wikipedia.org/wiki/List_of_tools_for_static_code_analysis
https://web.archive.org/web/20190821204156/http:/www.owasp.org/index.php/Code_Review_Introduction
https://web.archive.org/web/20190821204156/http:/www.owasp.org/index.php/Code_Review_Introduction
https://securitylab.github.com/research/apache-struts-CVE-2018-11776/

www.crcs.cz/rsa @CRoCS_MUNI

Conclusions

• Plan your work and time (work iteratively)

• Different reviews needs different techniques (be flexible)

• Code review is creative process (have fun)

• Tools can help you a lot (use them)

– but main part of work is up to you

• Code review also contains human interaction (be polite)

56 | PV286 - Security Code Review

Questions

	Slide 1: PV286 - Secure coding principles and practices
	Slide 2: Organizational Aspects
	Slide 3: Problem
	Slide 4: Example problem – Debian RNG flaw
	Slide 5: Debian RNG flaw
	Slide 6: Fatal mistake
	Slide 7: Morale
	Slide 8: Why to perform source code review?
	Slide 9: Security code Review
	Slide 10: Resources
	Slide 11: Security code review
	Slide 12: Application review phases
	Slide 13: Timeline
	Slide 14: Information Collection
	Slide 15: Common problems
	Slide 16: Iterative process
	Slide 17: Top-down approach
	Slide 18: Bottom-up approach
	Slide 19: Hybrid approach
	Slide 20: Verify the progress you are making
	Slide 21: Verify the progress you are making (cont.)
	Slide 22: Security code review - hints
	Slide 23: Present results (Finding summary)
	Slide 24: Finding summary - example
	Slide 25: Architecture review
	Slide 26: Architecture overview
	Slide 27: Architecture review (2)
	Slide 28: Sensitive data flow mapping
	Slide 29: Protocol design (and implementation)
	Slide 30: Cryptography usage
	Slide 31: Cryptography usage (2)
	Slide 32: Cryptography implementation
	Slide 33: code inspection
	Slide 34: Example process
	Slide 35: Code navigation
	Slide 36: Code auditing strategies
	Slide 37: Code comprehension (CC) strategies
	Slide 38: CC strategy - Trace Malicious Input
	Slide 39: Trace Malicious Input - characteristics
	Slide 40: CC strategy - Analyse Module & Algorithm
	Slide 41: Analyse a Module - characteristics
	Slide 42: CC strategy – other useful strategies
	Slide 43: Candidate points (CP) strategies
	Slide 44: Candidate points strategies
	Slide 45: Candidate points strategies
	Slide 46: Tools
	Slide 47: Handy tools
	Slide 48: Handy tools
	Slide 49: Anti-patterns
	Slide 50: (Security) Antipatterns
	Slide 51: Security anti-patterns
	Slide 52: Practical & Commercial Considerations
	Slide 53: Conclusions & READING
	Slide 54: Recommended reading
	Slide 55: Recommended reading
	Slide 56: Conclusions

