
https://crocs.fi.muni.cz @CRoCS_MUNI

PV286 - Secure coding principles and

practices

Secure coding introduction + language level vulnerabilities:

Buffer overflow, type overflow, strings

Łukasz Chmielewski chmiel@fi.muni.cz (email me with your questions/feedback)

Centre for Research on Cryptography and Security, Masaryk University

Consultation hours: Friday 9.30-11.00 in A406 (but email me before).

mailto:chmiel@fi.muni.cz

https://crocs.fi.muni.cz @CRoCS_MUNI

This Lecture

•

•

•

•

| PV286 - Secure coding2

https://is.muni.cz/auth/el/fi/jaro2022/PA193/um/video/PA193_01_BufferOverflowStrings_2022.video5
https://is.muni.cz/auth/el/fi/jaro2024/PV286/um/

https://crocs.fi.muni.cz @CRoCS_MUNI

This Lecture

• Course trivia: PV286+PA193

•

•

•

| PV286 - Secure coding2

https://is.muni.cz/auth/el/fi/jaro2022/PA193/um/video/PA193_01_BufferOverflowStrings_2022.video5
https://is.muni.cz/auth/el/fi/jaro2024/PV286/um/

https://crocs.fi.muni.cz @CRoCS_MUNI

This Lecture

• Course trivia: PV286+PA193

• Short Project Presentation (by Jan Kvapil)

•

•

| PV286 - Secure coding2

https://is.muni.cz/auth/el/fi/jaro2022/PA193/um/video/PA193_01_BufferOverflowStrings_2022.video5
https://is.muni.cz/auth/el/fi/jaro2024/PV286/um/

https://crocs.fi.muni.cz @CRoCS_MUNI

This Lecture

• Course trivia: PV286+PA193

• Short Project Presentation (by Jan Kvapil)

• The lecture itself. If we do not finish, then please check:

•

| PV286 - Secure coding2

https://is.muni.cz/auth/el/fi/jaro2022/PA193/um/video/PA193_01_BufferOverflowStrings_2022.video5
https://is.muni.cz/auth/el/fi/jaro2024/PV286/um/

https://crocs.fi.muni.cz @CRoCS_MUNI

This Lecture

• Course trivia: PV286+PA193

• Short Project Presentation (by Jan Kvapil)

• The lecture itself. If we do not finish, then please check:
– https://is.muni.cz/auth/el/fi/jaro2022/PA193/um/video/PA193_01_BufferOverflowStrings_2022.video5

•

| PV286 - Secure coding2

https://is.muni.cz/auth/el/fi/jaro2022/PA193/um/video/PA193_01_BufferOverflowStrings_2022.video5
https://is.muni.cz/auth/el/fi/jaro2024/PV286/um/

https://crocs.fi.muni.cz @CRoCS_MUNI

This Lecture

• Course trivia: PV286+PA193

• Short Project Presentation (by Jan Kvapil)

• The lecture itself. If we do not finish, then please check:
– https://is.muni.cz/auth/el/fi/jaro2022/PA193/um/video/PA193_01_BufferOverflowStrings_2022.video5

• Materials:

| PV286 - Secure coding2

https://is.muni.cz/auth/el/fi/jaro2022/PA193/um/video/PA193_01_BufferOverflowStrings_2022.video5
https://is.muni.cz/auth/el/fi/jaro2024/PV286/um/

https://crocs.fi.muni.cz @CRoCS_MUNI

This Lecture

• Course trivia: PV286+PA193

• Short Project Presentation (by Jan Kvapil)

• The lecture itself. If we do not finish, then please check:
– https://is.muni.cz/auth/el/fi/jaro2022/PA193/um/video/PA193_01_BufferOverflowStrings_2022.video5

• Materials:
– https://is.muni.cz/auth/el/fi/jaro2024/PV286/um/

| PV286 - Secure coding2

https://is.muni.cz/auth/el/fi/jaro2022/PA193/um/video/PA193_01_BufferOverflowStrings_2022.video5
https://is.muni.cz/auth/el/fi/jaro2024/PV286/um/

https://crocs.fi.muni.cz @CRoCS_MUNI

COURSE TRIVIA:
PV286+PA193_00_COURSE_ORGANISATION_2024

| PV286 - Secure coding3

https://crocs.fi.muni.cz @CRoCS_MUNI

Problem?

https://nvd.nist.gov/

| PV286 - Secure coding4

https://crocs.fi.muni.cz @CRoCS_MUNI

Problem?

https://nvd.nist.gov/

| PV286 - Secure coding4

https://crocs.fi.muni.cz @CRoCS_MUNI

What is the cost of insecure software

•

•

•

•

•

| PV286 - Secure coding5

https://crocs.fi.muni.cz @CRoCS_MUNI

What is the cost of insecure software

• Increased risk and failures due to generally increased usage of computers

•

•

•

•

| PV286 - Secure coding5

https://crocs.fi.muni.cz @CRoCS_MUNI

What is the cost of insecure software

• Increased risk and failures due to generally increased usage of computers

• Fixing bug in released version is more expensive

– Testing, announcements…

•

•

•

| PV286 - Secure coding5

https://crocs.fi.muni.cz @CRoCS_MUNI

What is the cost of insecure software

• Increased risk and failures due to generally increased usage of computers

• Fixing bug in released version is more expensive

– Testing, announcements…

• Liability laws

– Need to notify, settlements, GDPR...

•

•

| PV286 - Secure coding5

https://crocs.fi.muni.cz @CRoCS_MUNI

What is the cost of insecure software

• Increased risk and failures due to generally increased usage of computers

• Fixing bug in released version is more expensive

– Testing, announcements…

• Liability laws

– Need to notify, settlements, GDPR...

• Reputation loss

•

| PV286 - Secure coding5

https://crocs.fi.muni.cz @CRoCS_MUNI

What is the cost of insecure software

• Increased risk and failures due to generally increased usage of computers

• Fixing bug in released version is more expensive

– Testing, announcements…

• Liability laws

– Need to notify, settlements, GDPR...

• Reputation loss

– (unfortunately, does not seem to be at the moment)

•

| PV286 - Secure coding5

https://crocs.fi.muni.cz @CRoCS_MUNI

What is the cost of insecure software

• Increased risk and failures due to generally increased usage of computers

• Fixing bug in released version is more expensive

– Testing, announcements…

• Liability laws

– Need to notify, settlements, GDPR...

• Reputation loss

– (unfortunately, does not seem to be at the moment)

• Cost of defense is decreasing

– better training (like this course ☺), automated tools, development methods, new langs…

– but the complexity of software is also increasing

| PV286 - Secure coding5

https://crocs.fi.muni.cz @CRoCS_MUNI

There is HUGE market for (undisclosed) vulnerabilities

• Up to millions of dollars for single undisclosed exploit

•

•

https://zerodium.com/program.html

| PV286 - Secure coding6

https://crocs.fi.muni.cz @CRoCS_MUNI

There is HUGE market for (undisclosed) vulnerabilities

• Up to millions of dollars for single undisclosed exploit

•

•

https://zerodium.com/program.html

| PV286 - Secure coding6

https://crocs.fi.muni.cz @CRoCS_MUNI

There is HUGE market for (undisclosed) vulnerabilities

• Up to millions of dollars for single undisclosed exploit

• Payed over defined period it stays undiscovered

– Product vendor is not notified and cannot fix

•

https://zerodium.com/program.html

| PV286 - Secure coding6

https://crocs.fi.muni.cz @CRoCS_MUNI

There is HUGE market for (undisclosed) vulnerabilities

• Up to millions of dollars for single undisclosed exploit

• Payed over defined period it stays undiscovered

– Product vendor is not notified and cannot fix

• Ethics: export restrictions to sell exploit kits
– But HackingTeam, Cellebrite, NSO…

https://zerodium.com/program.html

| PV286 - Secure coding6

https://crocs.fi.muni.cz @CRoCS_MUNI

What software security means?

• Use of generic good development and security practices
– Education, testing, defence in depth, code review…

– Safety (random errors CRC good enough) vs. security (intentional attacker recomputing CRC after malicious change)

– Security is process, not product (Secure Development Lifecycle)

•

•

•

•

•

Icons made by geotatah, eucalypt, freepik from www.flaticon.com

| PV286 - Secure coding7

https://crocs.fi.muni.cz @CRoCS_MUNI

What software security means?

• Use of generic good development and security practices
– Education, testing, defence in depth, code review…

– Safety (random errors CRC good enough) vs. security (intentional attacker recomputing CRC after malicious change)

– Security is process, not product (Secure Development Lifecycle)

• Have systematic deployment, maintenance and mitigation of issues (including the security relevant)
– Monitor, triage, fix, update process, detection of issues in 3rd party libs…

•

•

•

•

Icons made by geotatah, eucalypt, freepik from www.flaticon.com

| PV286 - Secure coding7

https://crocs.fi.muni.cz @CRoCS_MUNI

What software security means?

• Use of generic good development and security practices
– Education, testing, defence in depth, code review…

– Safety (random errors CRC good enough) vs. security (intentional attacker recomputing CRC after malicious change)

– Security is process, not product (Secure Development Lifecycle)

• Have systematic deployment, maintenance and mitigation of issues (including the security relevant)
– Monitor, triage, fix, update process, detection of issues in 3rd party libs…

• Usability - easy to use right, hard to misuse
– Hard for developers to misuse or misconfigure (API security…), hard for end-users to make a mistake

– If misuse, then limit its impact, secure defaults…

•

•

•

Icons made by geotatah, eucalypt, freepik from www.flaticon.com

| PV286 - Secure coding7

https://crocs.fi.muni.cz @CRoCS_MUNI

What software security means?

• Use of generic good development and security practices
– Education, testing, defence in depth, code review…

– Safety (random errors CRC good enough) vs. security (intentional attacker recomputing CRC after malicious change)

– Security is process, not product (Secure Development Lifecycle)

• Have systematic deployment, maintenance and mitigation of issues (including the security relevant)
– Monitor, triage, fix, update process, detection of issues in 3rd party libs…

• Usability - easy to use right, hard to misuse
– Hard for developers to misuse or misconfigure (API security…), hard for end-users to make a mistake

– If misuse, then limit its impact, secure defaults…

• Automated and manual review and testing
– Continuous integration, pentesting, security code review

•

•

Icons made by geotatah, eucalypt, freepik from www.flaticon.com

| PV286 - Secure coding7

https://crocs.fi.muni.cz @CRoCS_MUNI

What software security means?

• Use of generic good development and security practices
– Education, testing, defence in depth, code review…

– Safety (random errors CRC good enough) vs. security (intentional attacker recomputing CRC after malicious change)

– Security is process, not product (Secure Development Lifecycle)

• Have systematic deployment, maintenance and mitigation of issues (including the security relevant)
– Monitor, triage, fix, update process, detection of issues in 3rd party libs…

• Usability - easy to use right, hard to misuse
– Hard for developers to misuse or misconfigure (API security…), hard for end-users to make a mistake

– If misuse, then limit its impact, secure defaults…

• Automated and manual review and testing
– Continuous integration, pentesting, security code review

• Language-specific issues and procedures, corresponding tooling and automation
– Buffer overflow (C/C++), code injection (Java)…

•

Icons made by geotatah, eucalypt, freepik from www.flaticon.com

| PV286 - Secure coding7

https://crocs.fi.muni.cz @CRoCS_MUNI

What software security means?

• Use of generic good development and security practices
– Education, testing, defence in depth, code review…

– Safety (random errors CRC good enough) vs. security (intentional attacker recomputing CRC after malicious change)

– Security is process, not product (Secure Development Lifecycle)

• Have systematic deployment, maintenance and mitigation of issues (including the security relevant)
– Monitor, triage, fix, update process, detection of issues in 3rd party libs…

• Usability - easy to use right, hard to misuse
– Hard for developers to misuse or misconfigure (API security…), hard for end-users to make a mistake

– If misuse, then limit its impact, secure defaults…

• Automated and manual review and testing
– Continuous integration, pentesting, security code review

• Language-specific issues and procedures, corresponding tooling and automation
– Buffer overflow (C/C++), code injection (Java)…

• Use of secure cryptographic primitives
– Cryptographic libraries, random numbers, password handling, secure channels, key distribution…

Icons made by geotatah, eucalypt, freepik from www.flaticon.com

| PV286 - Secure coding7

https://crocs.fi.muni.cz @CRoCS_MUNI

Defensive programming

• Term coined by Kernighan and Plauger, 1981

– “writing the program so it can cope with small disasters”

– talked about in introductory programming courses

• Practice of coding with the mind-set that errors are inevitable, and

something will always go wrong

– prepare program for unexpected behavior and inputs

– prepare program for easier testing and bug diagnostics

•

| PV286 - Secure coding8

https://crocs.fi.muni.cz @CRoCS_MUNI

Defensive programming

• Term coined by Kernighan and Plauger, 1981

– “writing the program so it can cope with small disasters”

– talked about in introductory programming courses

• Practice of coding with the mind-set that errors are inevitable, and

something will always go wrong

– prepare program for unexpected behavior and inputs

– prepare program for easier testing and bug diagnostics

• Defensive programming targets mainly unintentional errors (not

intentional attacks)

– But increasingly given security connotation

| PV286 - Secure coding8

https://crocs.fi.muni.cz @CRoCS_MUNI

WHERE TO LEARN ABOUT BUGS AND

RESULTING VULNERABILITIES?

| PV286 - Secure coding9

https://crocs.fi.muni.cz @CRoCS_MUNI

Attacker goals and related vulnerabilities

• Bug is unintended and unwanted behavior which attacker can use to:

1. Steal some data (keys in memory, content of files…)

2.

3.

4.

5.

•

| PV286 - Secure coding10

https://crocs.fi.muni.cz @CRoCS_MUNI

Attacker goals and related vulnerabilities

• Bug is unintended and unwanted behavior which attacker can use to:

1. Steal some data (keys in memory, content of files…)

2. Bypass some protection (access rights, authentication, hijack session)

3.

4.

5.

•

| PV286 - Secure coding10

https://crocs.fi.muni.cz @CRoCS_MUNI

Attacker goals and related vulnerabilities

• Bug is unintended and unwanted behavior which attacker can use to:

1. Steal some data (keys in memory, content of files…)

2. Bypass some protection (access rights, authentication, hijack session)

3. Execute malicious code (custom payload, ROP…)

4.

5.

•

| PV286 - Secure coding10

https://crocs.fi.muni.cz @CRoCS_MUNI

Attacker goals and related vulnerabilities

• Bug is unintended and unwanted behavior which attacker can use to:

1. Steal some data (keys in memory, content of files…)

2. Bypass some protection (access rights, authentication, hijack session)

3. Execute malicious code (custom payload, ROP…)

4. Cause denial of service (resource exhaustion, infinite loop, regex)

5. …

•

| PV286 - Secure coding10

https://crocs.fi.muni.cz @CRoCS_MUNI

Attacker goals and related vulnerabilities

• Bug is unintended and unwanted behavior which attacker can use to:

1. Steal some data (keys in memory, content of files…)

2. Bypass some protection (access rights, authentication, hijack session)

3. Execute malicious code (custom payload, ROP…)

4. Cause denial of service (resource exhaustion, infinite loop, regex)

5. …

• The real attack (exploit) often combines multiple steps

– E.g., DoS to deplete memory resulting in failed dynamic allocation, then write to null

pointer, then execute malicious payload

| PV286 - Secure coding10

https://crocs.fi.muni.cz @CRoCS_MUNI

Where to find relevant bug patterns and info

• Taxonomies of vulnerabilities (systematic)
– Common Weakness Enumeration (CWE) https://cwe.mitre.org/

– Wikipedia (https://en.wikipedia.org/wiki/Memory_safety ...)

•

•

•

| PV286 - Secure coding11

https://cwe.mitre.org/
https://en.wikipedia.org/wiki/Memory_safety
https://cve.mitre.org/
https://cwe.mitre.org/top25/archive/2020/2020_cwe_top25.html
https://owasp.org/www-project-top-ten/
https://www.hackerone.com/top-10-vulnerabilities
https://info.veracode.com/state-of-software-security-volume-11-flaw-frequency-by-language-infosheet-resource.html
https://info.veracode.com/state-of-software-security-volume-11-flaw-frequency-by-language-infosheet-resource.html
https://find-sec-bugs.github.io/bugs.htm

https://crocs.fi.muni.cz @CRoCS_MUNI

Where to find relevant bug patterns and info

• Taxonomies of vulnerabilities (systematic)
– Common Weakness Enumeration (CWE) https://cwe.mitre.org/

– Wikipedia (https://en.wikipedia.org/wiki/Memory_safety ...)

• List of real vulnerabilities detected and reported (complex real-world examples)
– Common Vulnerabilities and Exposures (CVE) https://cve.mitre.org/

•

•

| PV286 - Secure coding11

https://cwe.mitre.org/
https://en.wikipedia.org/wiki/Memory_safety
https://cve.mitre.org/
https://cwe.mitre.org/top25/archive/2020/2020_cwe_top25.html
https://owasp.org/www-project-top-ten/
https://www.hackerone.com/top-10-vulnerabilities
https://info.veracode.com/state-of-software-security-volume-11-flaw-frequency-by-language-infosheet-resource.html
https://info.veracode.com/state-of-software-security-volume-11-flaw-frequency-by-language-infosheet-resource.html
https://find-sec-bugs.github.io/bugs.htm

https://crocs.fi.muni.cz @CRoCS_MUNI

Where to find relevant bug patterns and info

• Taxonomies of vulnerabilities (systematic)
– Common Weakness Enumeration (CWE) https://cwe.mitre.org/

– Wikipedia (https://en.wikipedia.org/wiki/Memory_safety ...)

• List of real vulnerabilities detected and reported (complex real-world examples)
– Common Vulnerabilities and Exposures (CVE) https://cve.mitre.org/

• Lists of frequent bugs (prioritization)
– The CWE Top 25 https://cwe.mitre.org/top25/archive/2020/2020_cwe_top25.html

– OWASP TOP10 https://owasp.org/www-project-top-ten/

– HackerOne TOP 10 https://www.hackerone.com/top-10-vulnerabilities

– Veracode TOP 10 by language https://info.veracode.com/state-of-software-security-volume-11-
flaw-frequency-by-language-infosheet-resource.html

– Significant differences between usage domains (web vs. embedded devices)

•

| PV286 - Secure coding11

https://cwe.mitre.org/
https://en.wikipedia.org/wiki/Memory_safety
https://cve.mitre.org/
https://cwe.mitre.org/top25/archive/2020/2020_cwe_top25.html
https://owasp.org/www-project-top-ten/
https://www.hackerone.com/top-10-vulnerabilities
https://info.veracode.com/state-of-software-security-volume-11-flaw-frequency-by-language-infosheet-resource.html
https://info.veracode.com/state-of-software-security-volume-11-flaw-frequency-by-language-infosheet-resource.html
https://find-sec-bugs.github.io/bugs.htm

https://crocs.fi.muni.cz @CRoCS_MUNI

Where to find relevant bug patterns and info

• Taxonomies of vulnerabilities (systematic)
– Common Weakness Enumeration (CWE) https://cwe.mitre.org/

– Wikipedia (https://en.wikipedia.org/wiki/Memory_safety ...)

• List of real vulnerabilities detected and reported (complex real-world examples)
– Common Vulnerabilities and Exposures (CVE) https://cve.mitre.org/

• Lists of frequent bugs (prioritization)
– The CWE Top 25 https://cwe.mitre.org/top25/archive/2020/2020_cwe_top25.html

– OWASP TOP10 https://owasp.org/www-project-top-ten/

– HackerOne TOP 10 https://www.hackerone.com/top-10-vulnerabilities

– Veracode TOP 10 by language https://info.veracode.com/state-of-software-security-volume-11-
flaw-frequency-by-language-infosheet-resource.html

– Significant differences between usage domains (web vs. embedded devices)

• Bug patterns searched for by specific tool (understanding bugs & tool used)
– E.g., FindSecurityBugs (Java): https://find-sec-bugs.github.io/bugs.htm

| PV286 - Secure coding11

https://cwe.mitre.org/
https://en.wikipedia.org/wiki/Memory_safety
https://cve.mitre.org/
https://cwe.mitre.org/top25/archive/2020/2020_cwe_top25.html
https://owasp.org/www-project-top-ten/
https://www.hackerone.com/top-10-vulnerabilities
https://info.veracode.com/state-of-software-security-volume-11-flaw-frequency-by-language-infosheet-resource.html
https://info.veracode.com/state-of-software-security-volume-11-flaw-frequency-by-language-infosheet-resource.html
https://find-sec-bugs.github.io/bugs.htm

https://crocs.fi.muni.cz @CRoCS_MUNI

Common Weakness Enumeration (CWE)

• Taxonomy of vulnerabilities https://cwe.mitre.org/

• List of vulnerability categories, sub-categories,

examples and mitigation

– Baseline for vulnerability identification, mitigation and

prevention

– Itself is great study material including examples

•

| PV286 - Secure coding12

https://cwe.mitre.org/
https://cwe.mitre.org/data/definitions/124.html

https://crocs.fi.muni.cz @CRoCS_MUNI

Common Weakness Enumeration (CWE)

• Taxonomy of vulnerabilities https://cwe.mitre.org/

• List of vulnerability categories, sub-categories,

examples and mitigation

– Baseline for vulnerability identification, mitigation and

prevention

– Itself is great study material including examples

• Example CWE-124 Buffer Underwrite

– https://cwe.mitre.org/data/definitions/124.html

| PV286 - Secure coding12

https://cwe.mitre.org/
https://cwe.mitre.org/data/definitions/124.html

https://crocs.fi.muni.cz @CRoCS_MUNI

Common Weakness Enumeration (CWE)

• Taxonomy of vulnerabilities https://cwe.mitre.org/

• List of vulnerability categories, sub-categories,

examples and mitigation

– Baseline for vulnerability identification, mitigation and

prevention

– Itself is great study material including examples

• Example CWE-124 Buffer Underwrite

– https://cwe.mitre.org/data/definitions/124.html

int main() {
 // ...

 strncpy(destBuf, &srcBuf[find(srcBuf, ch)], 1024);
}

| PV286 - Secure coding12

https://cwe.mitre.org/
https://cwe.mitre.org/data/definitions/124.html

https://crocs.fi.muni.cz @CRoCS_MUNI

https://cwe.mitre.org/data/definitions/124.html

https://cwe.mitre.org/data/definitions/124.html

https://crocs.fi.muni.cz @CRoCS_MUNI

https://cwe.mitre.org/data/definitions/124.html

https://cwe.mitre.org/data/definitions/124.html

https://crocs.fi.muni.cz @CRoCS_MUNI

https://cwe.mitre.org/data/definitions/124.html

https://cwe.mitre.org/data/definitions/124.html

https://crocs.fi.muni.cz @CRoCS_MUNI

https://cwe.mitre.org/data/definitions/124.html

https://cwe.mitre.org/data/definitions/124.html

https://crocs.fi.muni.cz @CRoCS_MUNI

https://cwe.mitre.org/data/definitions/124.html

https://cwe.mitre.org/data/definitions/124.html

https://crocs.fi.muni.cz @CRoCS_MUNI

https://cwe.mitre.org/data/definitions/124.html

https://cwe.mitre.org/data/definitions/124.html

https://crocs.fi.muni.cz @CRoCS_MUNI

https://crocs.fi.muni.cz @CRoCS_MUNI

https://crocs.fi.muni.cz @CRoCS_MUNI

https://crocs.fi.muni.cz @CRoCS_MUNI

https://crocs.fi.muni.cz @CRoCS_MUNI

Frequent bugs – worth of prioritization (CWE/CVE)

https://cwe.mitre.org/top25/archive/2020/2020_cwe_top25.html

•

| PV286 - Secure coding15

https://crocs.fi.muni.cz @CRoCS_MUNI

Frequent bugs – worth of prioritization (CWE/CVE)

https://cwe.mitre.org/top25/archive/2020/2020_cwe_top25.html

•

| PV286 - Secure coding15

https://crocs.fi.muni.cz @CRoCS_MUNI

Frequent bugs – worth of prioritization (CWE/CVE)

https://cwe.mitre.org/top25/archive/2020/2020_cwe_top25.html

•

| PV286 - Secure coding15

https://crocs.fi.muni.cz @CRoCS_MUNI

Frequent bugs – worth of prioritization (CWE/CVE)

https://cwe.mitre.org/top25/archive/2020/2020_cwe_top25.html

•

| PV286 - Secure coding15

https://crocs.fi.muni.cz @CRoCS_MUNI

Frequent bugs – worth of prioritization (CWE/CVE)

https://cwe.mitre.org/top25/archive/2020/2020_cwe_top25.html

•

| PV286 - Secure coding15

https://crocs.fi.muni.cz @CRoCS_MUNI

Frequent bugs – worth of prioritization (CWE/CVE)

https://cwe.mitre.org/top25/archive/2020/2020_cwe_top25.html

• Score by presence in real vulnerabilities

– Common Vulnerabilities and Exposures (CVE)

| PV286 - Secure coding15

https://crocs.fi.muni.cz @CRoCS_MUNI

Frequent bugs – worth of prioritization (web)

•

https://owasp.org/www-project-top-ten/

| PV286 - Secure coding16

https://crocs.fi.muni.cz @CRoCS_MUNI

Frequent bugs – worth of prioritization (web)

• Be aware:

– Differences between software domains (web, OS kernel, libraries…)

https://owasp.org/www-project-top-ten/

| PV286 - Secure coding16

https://crocs.fi.muni.cz @CRoCS_MUNI

Frequent bugs – worth of prioritization (web)

• Be aware:

– Differences between software domains (web, OS kernel, libraries…)

– Detection bias – bugs we can more easily detect seem to be more frequent

https://owasp.org/www-project-top-ten/

| PV286 - Secure coding16

https://crocs.fi.muni.cz @CRoCS_MUNI

Example: Injection (1. OWASP TOP 10, 3. CWE Top 25)

• Goal: Return records from DB for the provided customer ID (custID)

•

•

•

https://owasp.org/www-project-top-ten/2017/A1_2017-Injection

| PV286 - Secure coding17

https://cheatsheetseries.owasp.org/cheatsheets/SQL_Injection_Prevention_Cheat_Sheet.html
https://owasp.org/www-project-top-ten/2017/A1_2017-Injection

https://crocs.fi.muni.cz @CRoCS_MUNI

Example: Injection (1. OWASP TOP 10, 3. CWE Top 25)

• Goal: Return records from DB for the provided customer ID (custID)
String query = "SELECT * FROM accounts WHERE custID='" + request.getParameter("id")
+ “’”;

•

•

•

https://owasp.org/www-project-top-ten/2017/A1_2017-Injection

| PV286 - Secure coding17

https://cheatsheetseries.owasp.org/cheatsheets/SQL_Injection_Prevention_Cheat_Sheet.html
https://owasp.org/www-project-top-ten/2017/A1_2017-Injection

https://crocs.fi.muni.cz @CRoCS_MUNI

Example: Injection (1. OWASP TOP 10, 3. CWE Top 25)

• Goal: Return records from DB for the provided customer ID (custID)
String query = "SELECT * FROM accounts WHERE custID='" + request.getParameter("id")
+ “’”;

• User/attacker will provide customer ID as follows:
– http://example.com/app/accountView?id=' or '1'='1

•

•

https://owasp.org/www-project-top-ten/2017/A1_2017-Injection

| PV286 - Secure coding17

https://cheatsheetseries.owasp.org/cheatsheets/SQL_Injection_Prevention_Cheat_Sheet.html
https://owasp.org/www-project-top-ten/2017/A1_2017-Injection

https://crocs.fi.muni.cz @CRoCS_MUNI

Example: Injection (1. OWASP TOP 10, 3. CWE Top 25)

• Goal: Return records from DB for the provided customer ID (custID)
String query = "SELECT * FROM accounts WHERE custID='" + request.getParameter("id")
+ “’”;

• User/attacker will provide customer ID as follows:
– http://example.com/app/accountView?id=' or '1'='1

•

•

https://owasp.org/www-project-top-ten/2017/A1_2017-Injection

| PV286 - Secure coding17

https://cheatsheetseries.owasp.org/cheatsheets/SQL_Injection_Prevention_Cheat_Sheet.html
https://owasp.org/www-project-top-ten/2017/A1_2017-Injection

https://crocs.fi.muni.cz @CRoCS_MUNI

Example: Injection (1. OWASP TOP 10, 3. CWE Top 25)

• Goal: Return records from DB for the provided customer ID (custID)
String query = "SELECT * FROM accounts WHERE custID='" + request.getParameter("id")
+ “’”;

• User/attacker will provide customer ID as follows:
– http://example.com/app/accountView?id=' or '1'='1

• Resulting SQL command after expansion (executed by database engine)
– SELECT * FROM accounts WHERE custID='' or '1'='1’

•

https://owasp.org/www-project-top-ten/2017/A1_2017-Injection

| PV286 - Secure coding17

https://cheatsheetseries.owasp.org/cheatsheets/SQL_Injection_Prevention_Cheat_Sheet.html
https://owasp.org/www-project-top-ten/2017/A1_2017-Injection

https://crocs.fi.muni.cz @CRoCS_MUNI

Example: Injection (1. OWASP TOP 10, 3. CWE Top 25)

• Goal: Return records from DB for the provided customer ID (custID)
String query = "SELECT * FROM accounts WHERE custID='" + request.getParameter("id")
+ “’”;

• User/attacker will provide customer ID as follows:
– http://example.com/app/accountView?id=' or '1'='1

• Resulting SQL command after expansion (executed by database engine)
– SELECT * FROM accounts WHERE custID='' or '1'='1’

•

https://owasp.org/www-project-top-ten/2017/A1_2017-Injection

| PV286 - Secure coding17

https://cheatsheetseries.owasp.org/cheatsheets/SQL_Injection_Prevention_Cheat_Sheet.html
https://owasp.org/www-project-top-ten/2017/A1_2017-Injection

https://crocs.fi.muni.cz @CRoCS_MUNI

Example: Injection (1. OWASP TOP 10, 3. CWE Top 25)

• Goal: Return records from DB for the provided customer ID (custID)
String query = "SELECT * FROM accounts WHERE custID='" + request.getParameter("id")
+ “’”;

• User/attacker will provide customer ID as follows:
– http://example.com/app/accountView?id=' or '1'='1

• Resulting SQL command after expansion (executed by database engine)
– SELECT * FROM accounts WHERE custID='' or '1'='1’

• Mitigation

– Don’t try to detect and fix injection by checking input arguments yourself!

– Read about defenses, use dedicated secure API (e.g., PreparedStatement in this case)
– https://cheatsheetseries.owasp.org/cheatsheets/SQL_Injection_Prevention_Cheat_Sheet.html

https://owasp.org/www-project-top-ten/2017/A1_2017-Injection

| PV286 - Secure coding17

https://cheatsheetseries.owasp.org/cheatsheets/SQL_Injection_Prevention_Cheat_Sheet.html
https://owasp.org/www-project-top-ten/2017/A1_2017-Injection

https://crocs.fi.muni.cz @CRoCS_MUNI

CWE flaw types by language
https://info.veracode.com/state-of-software-security-volume-11-flaw-frequency-by-language-infosheet-resource.html

18

https://crocs.fi.muni.cz @CRoCS_MUNI

Bugs patterns searched by tools

• Bug description

• Example of vulnerable code

• References to other lists

– CWE, OWASP…

https://find-sec-bugs.github.io/bugs.htm

| PV286 - Secure coding19

https://crocs.fi.muni.cz @CRoCS_MUNI

Bugs patterns searched by tools

• Bug description

• Example of vulnerable code

• References to other lists

– CWE, OWASP…

https://find-sec-bugs.github.io/bugs.htm

| PV286 - Secure coding19

https://crocs.fi.muni.cz @CRoCS_MUNI

Bugs patterns searched by tools

• Bug description

• Example of vulnerable code

• References to other lists

– CWE, OWASP…

https://find-sec-bugs.github.io/bugs.htm

| PV286 - Secure coding19

https://crocs.fi.muni.cz @CRoCS_MUNI

Bugs patterns searched by tools

• Bug description

• Example of vulnerable code

• References to other lists

– CWE, OWASP…

https://find-sec-bugs.github.io/bugs.htm

| PV286 - Secure coding19

https://crocs.fi.muni.cz @CRoCS_MUNI

Digging deeper and learning more…

• Read top-level categories from CWE Software Development
– Get broad overview https://cwe.mitre.org/data/definitions/699.html

•

•

•

•

| PV286 - Secure coding20

https://cwe.mitre.org/data/definitions/699.html

https://crocs.fi.muni.cz @CRoCS_MUNI

Digging deeper and learning more…

• Read top-level categories from CWE Software Development
– Get broad overview https://cwe.mitre.org/data/definitions/699.html

• Read details about top vulnerabilities from OWASP or CWE list
– Likely the most common ones

•

•

•

| PV286 - Secure coding20

https://cwe.mitre.org/data/definitions/699.html

https://crocs.fi.muni.cz @CRoCS_MUNI

Digging deeper and learning more…

• Read top-level categories from CWE Software Development
– Get broad overview https://cwe.mitre.org/data/definitions/699.html

• Read details about top vulnerabilities from OWASP or CWE list
– Likely the most common ones

• Find, read about and test several vulnerabilities in detail
– Which applies to your favorite language (e.g., Java)

– And target domain (e.g., server database backend) in detail

– Learn more about system by understanding all details

•

•

| PV286 - Secure coding20

https://cwe.mitre.org/data/definitions/699.html

https://crocs.fi.muni.cz @CRoCS_MUNI

Digging deeper and learning more…

• Read top-level categories from CWE Software Development
– Get broad overview https://cwe.mitre.org/data/definitions/699.html

• Read details about top vulnerabilities from OWASP or CWE list
– Likely the most common ones

• Find, read about and test several vulnerabilities in detail
– Which applies to your favorite language (e.g., Java)

– And target domain (e.g., server database backend) in detail

– Learn more about system by understanding all details

• Experiment with several automatic tools to detect such vulnerabilities

•

| PV286 - Secure coding20

https://cwe.mitre.org/data/definitions/699.html

https://crocs.fi.muni.cz @CRoCS_MUNI

Digging deeper and learning more…

• Read top-level categories from CWE Software Development
– Get broad overview https://cwe.mitre.org/data/definitions/699.html

• Read details about top vulnerabilities from OWASP or CWE list
– Likely the most common ones

• Find, read about and test several vulnerabilities in detail
– Which applies to your favorite language (e.g., Java)

– And target domain (e.g., server database backend) in detail

– Learn more about system by understanding all details

• Experiment with several automatic tools to detect such vulnerabilities

• Think like an attacker, have fun ☺

| PV286 - Secure coding20

https://cwe.mitre.org/data/definitions/699.html

https://crocs.fi.muni.cz @CRoCS_MUNI

Vulnerability disclosure basics

• Bug, Vulnerability, Proof of Concept (PoC), Exploit

•

•

•

| PV286 - Secure coding21

https://crocs.fi.muni.cz @CRoCS_MUNI

Vulnerability disclosure basics

• Bug, Vulnerability, Proof of Concept (PoC), Exploit

– Bug = buffer overflow

•

•

•

| PV286 - Secure coding21

https://crocs.fi.muni.cz @CRoCS_MUNI

Vulnerability disclosure basics

• Bug, Vulnerability, Proof of Concept (PoC), Exploit

– Bug = buffer overflow

– Vulnerability = execution of malicious code

•

•

•

| PV286 - Secure coding21

https://crocs.fi.muni.cz @CRoCS_MUNI

Vulnerability disclosure basics

• Bug, Vulnerability, Proof of Concept (PoC), Exploit

– Bug = buffer overflow

– Vulnerability = execution of malicious code

– Proof of Concept = tool triggering buffer overflow and crashing program

•

•

•

| PV286 - Secure coding21

https://crocs.fi.muni.cz @CRoCS_MUNI

Vulnerability disclosure basics

• Bug, Vulnerability, Proof of Concept (PoC), Exploit

– Bug = buffer overflow

– Vulnerability = execution of malicious code

– Proof of Concept = tool triggering buffer overflow and crashing program

– Exploit = tool trigger buffer overflow, executing custom payload and creating

root account on target machine

•

•

•

| PV286 - Secure coding21

https://crocs.fi.muni.cz @CRoCS_MUNI

Vulnerability disclosure basics

• Bug, Vulnerability, Proof of Concept (PoC), Exploit

– Bug = buffer overflow

– Vulnerability = execution of malicious code

– Proof of Concept = tool triggering buffer overflow and crashing program

– Exploit = tool trigger buffer overflow, executing custom payload and creating

root account on target machine

• Public disclosure, Uncoordinated public disclosure, Zero-day

•

•

| PV286 - Secure coding21

https://crocs.fi.muni.cz @CRoCS_MUNI

Vulnerability disclosure basics

• Bug, Vulnerability, Proof of Concept (PoC), Exploit

– Bug = buffer overflow

– Vulnerability = execution of malicious code

– Proof of Concept = tool triggering buffer overflow and crashing program

– Exploit = tool trigger buffer overflow, executing custom payload and creating

root account on target machine

• Public disclosure, Uncoordinated public disclosure, Zero-day

• Responsible disclosure, disclosure period/deadline, bugbounty

•

| PV286 - Secure coding21

https://crocs.fi.muni.cz @CRoCS_MUNI

Vulnerability disclosure basics

• Bug, Vulnerability, Proof of Concept (PoC), Exploit

– Bug = buffer overflow

– Vulnerability = execution of malicious code

– Proof of Concept = tool triggering buffer overflow and crashing program

– Exploit = tool trigger buffer overflow, executing custom payload and creating

root account on target machine

• Public disclosure, Uncoordinated public disclosure, Zero-day

• Responsible disclosure, disclosure period/deadline, bugbounty

• Whitehats, blackhats, red teams, blue teams

| PV286 - Secure coding21

https://crocs.fi.muni.cz @CRoCS_MUNI

HOW TO PREVENT, DETECT AND

MITIGATE CODE BUGS?

| PV286 - Secure coding22

https://crocs.fi.muni.cz @CRoCS_MUNI

How to prevent, detect and mitigate code bugs?

1. Protection on the source code level

– E.g., languages with/without implicit protection (containers/languages with array boundary checking)

– E.g., input checking, sanitization, safe alternatives to vulnerable function like safe string manipulation

2.

3.

4.

5.

| PV286 - Secure coding23

https://crocs.fi.muni.cz @CRoCS_MUNI

How to prevent, detect and mitigate code bugs?

1. Protection on the source code level

– E.g., languages with/without implicit protection (containers/languages with array boundary checking)

– E.g., input checking, sanitization, safe alternatives to vulnerable function like safe string manipulation

2. Protection by extensive testing (source code/binary/bytecode level)

– E.g., automatic detection by static and dynamic checkers

– E.g., code review, security testing

3.

4.

5.

| PV286 - Secure coding23

https://crocs.fi.muni.cz @CRoCS_MUNI

How to prevent, detect and mitigate code bugs?

1. Protection on the source code level

– E.g., languages with/without implicit protection (containers/languages with array boundary checking)

– E.g., input checking, sanitization, safe alternatives to vulnerable function like safe string manipulation

2. Protection by extensive testing (source code/binary/bytecode level)

– E.g., automatic detection by static and dynamic checkers

– E.g., code review, security testing

3. Protection by compiler (+ compiler flags)

– E.g., runtime checks introduced by compiler (stack protection)

4.

5.

| PV286 - Secure coding23

https://crocs.fi.muni.cz @CRoCS_MUNI

How to prevent, detect and mitigate code bugs?

1. Protection on the source code level

– E.g., languages with/without implicit protection (containers/languages with array boundary checking)

– E.g., input checking, sanitization, safe alternatives to vulnerable function like safe string manipulation

2. Protection by extensive testing (source code/binary/bytecode level)

– E.g., automatic detection by static and dynamic checkers

– E.g., code review, security testing

3. Protection by compiler (+ compiler flags)

– E.g., runtime checks introduced by compiler (stack protection)

4. Protection by execution environment

– E.g., DEP, ASLR, sandboxing, hardware isolation...

5. Protection by defense in depth

– All above in systematic secure development lifecycle, multiple layers of defense

| PV286 - Secure coding23

https://crocs.fi.muni.cz @CRoCS_MUNI

Microsoft’s Secure Development Lifecycle (SDL)

https://www.microsoft.com/en-us/securityengineering/sdl/practices

| PV286 - Secure coding24

https://crocs.fi.muni.cz @CRoCS_MUNI

Microsoft’s Secure Development Lifecycle (SDL)

https://www.microsoft.com/en-us/securityengineering/sdl/practices

| PV286 - Secure coding24

https://crocs.fi.muni.cz @CRoCS_MUNI

Microsoft’s Secure Development Lifecycle (SDL)

https://www.microsoft.com/en-us/securityengineering/sdl/practices

| PV286 - Secure coding24

https://crocs.fi.muni.cz @CRoCS_MUNI

Microsoft’s Secure Development Lifecycle (SDL)

https://www.microsoft.com/en-us/securityengineering/sdl/practices

| PV286 - Secure coding24

https://crocs.fi.muni.cz @CRoCS_MUNI

Microsoft’s Secure Development Lifecycle (SDL)

https://www.microsoft.com/en-us/securityengineering/sdl/practices

| PV286 - Secure coding24

https://crocs.fi.muni.cz @CRoCS_MUNI

Microsoft’s Secure Development Lifecycle (SDL)

https://www.microsoft.com/en-us/securityengineering/sdl/practices

| PV286 - Secure coding24

https://crocs.fi.muni.cz @CRoCS_MUNI

Microsoft’s Secure Development Lifecycle (SDL)

https://www.microsoft.com/en-us/securityengineering/sdl/practices

| PV286 - Secure coding24

https://crocs.fi.muni.cz @CRoCS_MUNI

Microsoft’s Secure Development Lifecycle (SDL)

https://www.microsoft.com/en-us/securityengineering/sdl/practices

| PV286 - Secure coding24

https://crocs.fi.muni.cz @CRoCS_MUNI

Use secure-by default languages and libraries

• Ideally, language is already designed to be more secure
– Partially true for newer languages like Go or Rust

– But new systematic issues may be found later

•

•

| PV286 - Secure coding25

https://crocs.fi.muni.cz @CRoCS_MUNI

Use secure-by default languages and libraries

• Ideally, language is already designed to be more secure
– Partially true for newer languages like Go or Rust

– But new systematic issues may be found later

• Libraries
– Use functions from platform standard API (e.g., AndroidKeyStore provider)

•

| PV286 - Secure coding25

https://crocs.fi.muni.cz @CRoCS_MUNI

Use secure-by default languages and libraries

• Ideally, language is already designed to be more secure
– Partially true for newer languages like Go or Rust

– But new systematic issues may be found later

• Libraries
– Use functions from platform standard API (e.g., AndroidKeyStore provider)

– Use libraries which are hard to be used incorrectly

• E.g., Libsodium’s crypto_secretbox_easy() vs. OpenSSL vs. own custom code

•

| PV286 - Secure coding25

https://crocs.fi.muni.cz @CRoCS_MUNI

Use secure-by default languages and libraries

• Ideally, language is already designed to be more secure
– Partially true for newer languages like Go or Rust

– But new systematic issues may be found later

• Libraries
– Use functions from platform standard API (e.g., AndroidKeyStore provider)

– Use libraries which are hard to be used incorrectly

• E.g., Libsodium’s crypto_secretbox_easy() vs. OpenSSL vs. own custom code

– Monitor used libraries/packages for new vulnerabilities (dependbot)

•

| PV286 - Secure coding25

https://crocs.fi.muni.cz @CRoCS_MUNI

Use secure-by default languages and libraries

• Ideally, language is already designed to be more secure
– Partially true for newer languages like Go or Rust

– But new systematic issues may be found later

• Libraries
– Use functions from platform standard API (e.g., AndroidKeyStore provider)

– Use libraries which are hard to be used incorrectly

• E.g., Libsodium’s crypto_secretbox_easy() vs. OpenSSL vs. own custom code

– Monitor used libraries/packages for new vulnerabilities (dependbot)

• Don’t design or implement own libraries especially not cryptographic
– Developing own library code likely means repeating other’s mistakes

– Cryptographic code is extremely difficult to code securely

| PV286 - Secure coding25

https://crocs.fi.muni.cz @CRoCS_MUNI

Use of more secure versions of functions

• Consider language removing whole class of vulnerabilities
– E.g., Rust to replace memory-related errors in C

•

•

| PV286 - Secure coding26

https://wiki.sei.cmu.edu/confluence/display/c/SEI+CERT+C+Coding+Standard

https://crocs.fi.muni.cz @CRoCS_MUNI

Use of more secure versions of functions

• Consider language removing whole class of vulnerabilities
– E.g., Rust to replace memory-related errors in C

• If language is fixed, then use more secure / hardened functions
– E.g., Secure C library ISO/IEC 9899:2011

– E.g., java.lang.Math precise arithmetic extensions

– E.g., Smart pointers in C++

•

| PV286 - Secure coding26

https://wiki.sei.cmu.edu/confluence/display/c/SEI+CERT+C+Coding+Standard

https://crocs.fi.muni.cz @CRoCS_MUNI

Use of more secure versions of functions

• Consider language removing whole class of vulnerabilities
– E.g., Rust to replace memory-related errors in C

• If language is fixed, then use more secure / hardened functions
– E.g., Secure C library ISO/IEC 9899:2011

– E.g., java.lang.Math precise arithmetic extensions

– E.g., Smart pointers in C++

•

char *gets(

char *buffer

);

char *gets_s(

char *buffer,

size_t sizeInCharacters

);

| PV286 - Secure coding26

https://wiki.sei.cmu.edu/confluence/display/c/SEI+CERT+C+Coding+Standard

https://crocs.fi.muni.cz @CRoCS_MUNI

Use of more secure versions of functions

• Consider language removing whole class of vulnerabilities
– E.g., Rust to replace memory-related errors in C

• If language is fixed, then use more secure / hardened functions
– E.g., Secure C library ISO/IEC 9899:2011

– E.g., java.lang.Math precise arithmetic extensions

– E.g., Smart pointers in C++

• Follow best practices, standards and coding standards
– E.g., CERT C Coding Standard

https://wiki.sei.cmu.edu/confluence/display/c/SEI+CERT+C+Coding+Standard

– (there are many of them, pick for your domain and/or already used in project)

char *gets(

char *buffer

);

char *gets_s(

char *buffer,

size_t sizeInCharacters

);

| PV286 - Secure coding26

https://wiki.sei.cmu.edu/confluence/display/c/SEI+CERT+C+Coding+Standard

https://crocs.fi.muni.cz @CRoCS_MUNI

Utilize hardening by compiler and platform

• Attack: Write attacker’s code on stack (e.g., via buffer overflow) and execute it

•

•

•

•

•

| PV286 - Secure coding27

https://crocs.fi.muni.cz @CRoCS_MUNI

Utilize hardening by compiler and platform

• Attack: Write attacker’s code on stack (e.g., via buffer overflow) and execute it

• Protection: Data Execution Prevention (DEP) – memory pages with non-
executable bit set (checked by CPU when using IP)

•

•

•

•

| PV286 - Secure coding27

https://crocs.fi.muni.cz @CRoCS_MUNI

Utilize hardening by compiler and platform

• Attack: Write attacker’s code on stack (e.g., via buffer overflow) and execute it

• Protection: Data Execution Prevention (DEP) – memory pages with non-
executable bit set (checked by CPU when using IP)

• Attack: Learn where sensitive info is placed, read from that address (or write)

•

•

•

| PV286 - Secure coding27

https://crocs.fi.muni.cz @CRoCS_MUNI

Utilize hardening by compiler and platform

• Attack: Write attacker’s code on stack (e.g., via buffer overflow) and execute it

• Protection: Data Execution Prevention (DEP) – memory pages with non-
executable bit set (checked by CPU when using IP)

• Attack: Learn where sensitive info is placed, read from that address (or write)

• Protection: Address Space Layout Randomization (ASLR) – addresses are
changed for every program run (hard to predict exact position)

•

•

| PV286 - Secure coding27

https://crocs.fi.muni.cz @CRoCS_MUNI

Utilize hardening by compiler and platform

• Attack: Write attacker’s code on stack (e.g., via buffer overflow) and execute it

• Protection: Data Execution Prevention (DEP) – memory pages with non-
executable bit set (checked by CPU when using IP)

• Attack: Learn where sensitive info is placed, read from that address (or write)

• Protection: Address Space Layout Randomization (ASLR) – addresses are
changed for every program run (hard to predict exact position)

• Attack: Change return address and jump into unexpected functions (Return-
oriented programming (ROP))

•

| PV286 - Secure coding27

https://crocs.fi.muni.cz @CRoCS_MUNI

Utilize hardening by compiler and platform

• Attack: Write attacker’s code on stack (e.g., via buffer overflow) and execute it

• Protection: Data Execution Prevention (DEP) – memory pages with non-
executable bit set (checked by CPU when using IP)

• Attack: Learn where sensitive info is placed, read from that address (or write)

• Protection: Address Space Layout Randomization (ASLR) – addresses are
changed for every program run (hard to predict exact position)

• Attack: Change return address and jump into unexpected functions (Return-
oriented programming (ROP))

• Protection: Control flow integrity – build graph of allowed jumps from source
code, enforce during runtime

| PV286 - Secure coding27

https://crocs.fi.muni.cz @CRoCS_MUNI

AUTOMATION AND TOOLING

| PV286 - Secure coding28

https://crocs.fi.muni.cz @CRoCS_MUNI

Static vs. dynamic analysis

• Static analysis
– Static Application Security Testing (SAST)

– Examine program’s code without executing it

– Can examine both source code and compiled code
• source code is easier to understand (more metadata)

– Can be applied on unfinished code

– Manual code audit is kind of “static” analysis

•

•

| PV286 - Secure coding29

https://crocs.fi.muni.cz @CRoCS_MUNI

Static vs. dynamic analysis

• Static analysis
– Static Application Security Testing (SAST)

– Examine program’s code without executing it

– Can examine both source code and compiled code
• source code is easier to understand (more metadata)

– Can be applied on unfinished code

– Manual code audit is kind of “static” analysis

• Dynamic analysis
– Code is executed = program is “running”

– Input values are supplied, internal memory is examined…

– Code must compile/run, code coverage by inputs is crucial

•

| PV286 - Secure coding29

https://crocs.fi.muni.cz @CRoCS_MUNI

Static vs. dynamic analysis

• Static analysis
– Static Application Security Testing (SAST)

– Examine program’s code without executing it

– Can examine both source code and compiled code
• source code is easier to understand (more metadata)

– Can be applied on unfinished code

– Manual code audit is kind of “static” analysis

• Dynamic analysis
– Code is executed = program is “running”

– Input values are supplied, internal memory is examined…

– Code must compile/run, code coverage by inputs is crucial

• Important: no single tool will ever catch all issues

| PV286 - Secure coding29

https://crocs.fi.muni.cz @CRoCS_MUNI

Automated analysis tools limitations

• Don’t expect tools to catch all issues!

•

•

•

| PV286 - Secure coding30

https://crocs.fi.muni.cz @CRoCS_MUNI

Automated analysis tools limitations

• Don’t expect tools to catch all issues!

• Overall program architecture is not understood

– sensitivity of program path

– impact of errors on other parts

•

•

| PV286 - Secure coding30

https://crocs.fi.muni.cz @CRoCS_MUNI

Automated analysis tools limitations

• Don’t expect tools to catch all issues!

• Overall program architecture is not understood

– sensitivity of program path

– impact of errors on other parts

• Application semantics is not understood

– Is string returned to the user? Can string also contain passwords?

•

| PV286 - Secure coding30

https://crocs.fi.muni.cz @CRoCS_MUNI

Automated analysis tools limitations

• Don’t expect tools to catch all issues!

• Overall program architecture is not understood

– sensitivity of program path

– impact of errors on other parts

• Application semantics is not understood

– Is string returned to the user? Can string also contain passwords?

• Social context is not understood

– Who is using the system? High entropy keys encrypted under short guessable

password?

| PV286 - Secure coding30

https://crocs.fi.muni.cz @CRoCS_MUNI

Always design for testability

• “Code that isn't tested doesn't work - this seems to be the safe

assumption.” Kent Beck

• Code written in a way which is easier to test

– Proper decomposition, unit tests, mock objects

– Source code annotations (with subsequent analysis)

•

•

| PV286 - Secure coding31

https://en.wikipedia.org/wiki/Design_For_Test
http://www.agiledata.org/essays/tdd.html

https://crocs.fi.muni.cz @CRoCS_MUNI

Always design for testability

• “Code that isn't tested doesn't work - this seems to be the safe

assumption.” Kent Beck

• Code written in a way which is easier to test

– Proper decomposition, unit tests, mock objects

– Source code annotations (with subsequent analysis)

• Code with extensive quality tests is easier to analyze by static and

dynamic tools

• References

– https://en.wikipedia.org/wiki/Design_For_Test

– http://www.agiledata.org/essays/tdd.html

| PV286 - Secure coding31

https://en.wikipedia.org/wiki/Design_For_Test
http://www.agiledata.org/essays/tdd.html

https://crocs.fi.muni.cz @CRoCS_MUNI

CONTINUOUS INTEGRATION

| PV286 - Secure coding32

https://crocs.fi.muni.cz @CRoCS_MUNI

Tests, Continuous integration…

• Running tools manually is insufficient for continuously developed projects

• Include static and dynamic analysis into Continuous Integration process

•

•

•

•

| PV286 - Secure coding33

https://crocs.fi.muni.cz @CRoCS_MUNI

Tests, Continuous integration…

• Running tools manually is insufficient for continuously developed projects

• Include static and dynamic analysis into Continuous Integration process

• Static analysis can be run on unfinished code chunks even before commit

– On developer side, on commits before merge…

•

•

•

| PV286 - Secure coding33

https://crocs.fi.muni.cz @CRoCS_MUNI

Tests, Continuous integration…

• Running tools manually is insufficient for continuously developed projects

• Include static and dynamic analysis into Continuous Integration process

• Static analysis can be run on unfinished code chunks even before commit

– On developer side, on commits before merge…

• Dynamic analysis requires sufficient code coverage => quality tests

•

•

| PV286 - Secure coding33

https://crocs.fi.muni.cz @CRoCS_MUNI

Tests, Continuous integration…

• Running tools manually is insufficient for continuously developed projects

• Include static and dynamic analysis into Continuous Integration process

• Static analysis can be run on unfinished code chunks even before commit

– On developer side, on commits before merge…

• Dynamic analysis requires sufficient code coverage => quality tests

• Time-consuming analysis can be run “overnight” on server (after push)

– Or continuously like non-stop fuzzing of the current version of application

•

| PV286 - Secure coding33

https://crocs.fi.muni.cz @CRoCS_MUNI

Tests, Continuous integration…

• Running tools manually is insufficient for continuously developed projects

• Include static and dynamic analysis into Continuous Integration process

• Static analysis can be run on unfinished code chunks even before commit

– On developer side, on commits before merge…

• Dynamic analysis requires sufficient code coverage => quality tests

• Time-consuming analysis can be run “overnight” on server (after push)

– Or continuously like non-stop fuzzing of the current version of application

• Tools for automatic monitoring of vulnerable components

– Well-known packages, libraries used by your project with known vulnerability

– E.g., GitHub’s Dependabot

| PV286 - Secure coding33

https://crocs.fi.muni.cz @CRoCS_MUNI

Continuous Integration: GitHub&Travis CI example

GitHub

| PV286 - Secure coding34

https://crocs.fi.muni.cz @CRoCS_MUNI

Continuous Integration: GitHub&Travis CI example

GitHub

COMMIT

Branch: Test

| PV286 - Secure coding34

https://crocs.fi.muni.cz @CRoCS_MUNI

Continuous Integration: GitHub&Travis CI example

GitHub

COMMIT

Branch: Test

Web hook

| PV286 - Secure coding34

https://crocs.fi.muni.cz @CRoCS_MUNI

Continuous Integration: GitHub&Travis CI example

GitHub

COMMIT

Branch: Test

Web hook

Tests

| PV286 - Secure coding34

https://crocs.fi.muni.cz @CRoCS_MUNI

Continuous Integration: GitHub&Travis CI example

GitHub

COMMIT

Branch: Test

Web hook

Tests

| PV286 - Secure coding34

https://crocs.fi.muni.cz @CRoCS_MUNI

Continuous Integration: GitHub&Travis CI example

GitHub

COMMIT

Branch: Test

Web hook

Tests

Tests OK

| PV286 - Secure coding34

https://crocs.fi.muni.cz @CRoCS_MUNI

Continuous Integration: GitHub&Travis CI example

GitHub

COMMIT

Branch: Test

Web hook

Artifacts

Tests

Tests OK

| PV286 - Secure coding34

https://crocs.fi.muni.cz @CRoCS_MUNI

CI: adding code analysis (e.g., CppCheck, Coverity)

GitHub

COMMIT

Branch: Test

Web hook

Tests

| PV286 - Secure coding35

https://crocs.fi.muni.cz @CRoCS_MUNI

CI: adding code analysis (e.g., CppCheck, Coverity)

GitHub

COMMIT

Branch: Test

Web hook

Tests

| PV286 - Secure coding35

https://crocs.fi.muni.cz @CRoCS_MUNI

CI: adding code analysis (e.g., CppCheck, Coverity)

GitHub

COMMIT

Branch: Test

Web hook

Tests

| PV286 - Secure coding35

https://crocs.fi.muni.cz @CRoCS_MUNI

CI: adding code analysis (e.g., CppCheck, Coverity)

GitHub

COMMIT

Branch: Test

Web hook

Tests

| PV286 - Secure coding35

https://crocs.fi.muni.cz @CRoCS_MUNI

CI: adding code analysis (e.g., CppCheck, Coverity)

GitHub

COMMIT

Branch: Test

Web hook

Tests

| PV286 - Secure coding35

https://crocs.fi.muni.cz @CRoCS_MUNI

Dependabot (GitHub)

| PV286 - Secure coding36

https://crocs.fi.muni.cz @CRoCS_MUNI

Dependabot (GitHub)

| PV286 - Secure coding36

https://crocs.fi.muni.cz @CRoCS_MUNI

Dependabot (GitHub)

| PV286 - Secure coding36

https://crocs.fi.muni.cz @CRoCS_MUNI

TYPICAL PROBLEMS FROM REAL

WORLD

| PV286 - Secure coding37

https://crocs.fi.muni.cz @CRoCS_MUNI

Typical issues – where theory meets practice ☺

• Insufficient knowledge/education of developers (mature developer would not do majority of issues)

– Education is time-consuming and expensive (complement with tooling, security champions)

•

•

•

•

•

| PV286 - Secure coding38

https://crocs.fi.muni.cz @CRoCS_MUNI

Typical issues – where theory meets practice ☺

• Insufficient knowledge/education of developers (mature developer would not do majority of issues)

– Education is time-consuming and expensive (complement with tooling, security champions)

• Legacy code

– Too many issues reported by tools to fix

– Fix itself can break things (so developers reluctant to fix what is “not” broken)

•

•

•

•

| PV286 - Secure coding38

https://crocs.fi.muni.cz @CRoCS_MUNI

Typical issues – where theory meets practice ☺

• Insufficient knowledge/education of developers (mature developer would not do majority of issues)

– Education is time-consuming and expensive (complement with tooling, security champions)

• Legacy code

– Too many issues reported by tools to fix

– Fix itself can break things (so developers reluctant to fix what is “not” broken)

• Missing specification of the expected behavior

– Missing analysis, changing implementation target

– If implemented code is successful, then is used elsewhere in different condition (original assumptions will be
invalidated)

•

•

•

| PV286 - Secure coding38

https://crocs.fi.muni.cz @CRoCS_MUNI

Typical issues – where theory meets practice ☺

• Insufficient knowledge/education of developers (mature developer would not do majority of issues)

– Education is time-consuming and expensive (complement with tooling, security champions)

• Legacy code

– Too many issues reported by tools to fix

– Fix itself can break things (so developers reluctant to fix what is “not” broken)

• Missing specification of the expected behavior

– Missing analysis, changing implementation target

– If implemented code is successful, then is used elsewhere in different condition (original assumptions will be
invalidated)

• Adding security only later (“Functionality first!”)
– It's happening all the time

•

•

| PV286 - Secure coding38

https://crocs.fi.muni.cz @CRoCS_MUNI

Typical issues – where theory meets practice ☺

• Insufficient knowledge/education of developers (mature developer would not do majority of issues)

– Education is time-consuming and expensive (complement with tooling, security champions)

• Legacy code

– Too many issues reported by tools to fix

– Fix itself can break things (so developers reluctant to fix what is “not” broken)

• Missing specification of the expected behavior

– Missing analysis, changing implementation target

– If implemented code is successful, then is used elsewhere in different condition (original assumptions will be
invalidated)

• Adding security only later (“Functionality first!”)
– It's happening all the time

• Heavy dependance on 3rd party libs
– No direct control over code, vulnerabilities outside our codebase, possibly unmaintained code (fix means fork)

– But re-implementing a wheel is usually a worse issue

•

| PV286 - Secure coding38

https://crocs.fi.muni.cz @CRoCS_MUNI

Typical issues – where theory meets practice ☺

• Insufficient knowledge/education of developers (mature developer would not do majority of issues)

– Education is time-consuming and expensive (complement with tooling, security champions)

• Legacy code

– Too many issues reported by tools to fix

– Fix itself can break things (so developers reluctant to fix what is “not” broken)

• Missing specification of the expected behavior

– Missing analysis, changing implementation target

– If implemented code is successful, then is used elsewhere in different condition (original assumptions will be
invalidated)

• Adding security only later (“Functionality first!”)
– It's happening all the time

• Heavy dependance on 3rd party libs
– No direct control over code, vulnerabilities outside our codebase, possibly unmaintained code (fix means fork)

– But re-implementing a wheel is usually a worse issue

• Using open-source code can be tricky, you usually must care about:
– Licenses (tools to help with like Whitesource, Blackduck)

– Open vulnerabilities, time-to-fix, how active is community

– In mature organizations, there's usually a open-source governance program that helps developers with choosing the right OSS tools

| PV286 - Secure coding38

https://crocs.fi.muni.cz @CRoCS_MUNI

Typical issues – where theory meets practice ☺

• Human issues
– No problem before we started to look for them

– Hard to admit own failures (If I cannot break it, nobody can. “But it is not exploitable”).

– Unresponsive/threatening companies

– Same with knowledge, lack of maturity, code guidelines, frameworks

•

•

•

•

•

| PV286 - Secure coding39

https://crocs.fi.muni.cz @CRoCS_MUNI

Typical issues – where theory meets practice ☺

• Human issues
– No problem before we started to look for them

– Hard to admit own failures (If I cannot break it, nobody can. “But it is not exploitable”).

– Unresponsive/threatening companies

– Same with knowledge, lack of maturity, code guidelines, frameworks

• Security economics
– Problem is known, yet not fixed – these who need to pay for fix are not these who will suffer

– Frequently, developer’s KPI is functionality, not security

•

•

•

•

| PV286 - Secure coding39

https://crocs.fi.muni.cz @CRoCS_MUNI

Typical issues – where theory meets practice ☺

• Human issues
– No problem before we started to look for them

– Hard to admit own failures (If I cannot break it, nobody can. “But it is not exploitable”).

– Unresponsive/threatening companies

– Same with knowledge, lack of maturity, code guidelines, frameworks

• Security economics
– Problem is known, yet not fixed – these who need to pay for fix are not these who will suffer

– Frequently, developer’s KPI is functionality, not security

• Customers do not want to update (new version can break things)
– Big upgrades mean big risks, small releases/upgrades can help with that

•

•

•

| PV286 - Secure coding39

https://crocs.fi.muni.cz @CRoCS_MUNI

Typical issues – where theory meets practice ☺

• Human issues
– No problem before we started to look for them

– Hard to admit own failures (If I cannot break it, nobody can. “But it is not exploitable”).

– Unresponsive/threatening companies

– Same with knowledge, lack of maturity, code guidelines, frameworks

• Security economics
– Problem is known, yet not fixed – these who need to pay for fix are not these who will suffer

– Frequently, developer’s KPI is functionality, not security

• Customers do not want to update (new version can break things)
– Big upgrades mean big risks, small releases/upgrades can help with that

• Trust, but Verify
– Many companies do not deliver what they promised

– Security is very common area: insecure updates, insecure installation procedures (curl & chmod & sudo)

•

•

| PV286 - Secure coding39

https://crocs.fi.muni.cz @CRoCS_MUNI

Typical issues – where theory meets practice ☺

• Human issues
– No problem before we started to look for them

– Hard to admit own failures (If I cannot break it, nobody can. “But it is not exploitable”).

– Unresponsive/threatening companies

– Same with knowledge, lack of maturity, code guidelines, frameworks

• Security economics
– Problem is known, yet not fixed – these who need to pay for fix are not these who will suffer

– Frequently, developer’s KPI is functionality, not security

• Customers do not want to update (new version can break things)
– Big upgrades mean big risks, small releases/upgrades can help with that

• Trust, but Verify
– Many companies do not deliver what they promised

– Security is very common area: insecure updates, insecure installation procedures (curl & chmod & sudo)

• Improper adoption of new tech
– protobuf, JSON, JWT, serialization...

– New languages (like "go") are cool, but you need to learn new tooling, test frameworks, CI/CD pipelines, dependencies, ...

• The other side – open-source great tools become also commercial (and free version get semi-abandoned)

| PV286 - Secure coding39

https://crocs.fi.muni.cz @CRoCS_MUNI

Questions

| PV286 - Secure coding40

https://crocs.fi.muni.cz @CRoCS_MUNI

DIGGING DEEPER…

| PV286 - Secure coding41

https://crocs.fi.muni.cz @CRoCS_MUNI

DIGGING DEEPER…

| PV286 - Secure coding41

https://crocs.fi.muni.cz @CRoCS_MUNI

Motivation problem

• Quiz – what is insecure in given program?

• Can you come up with attack?

•

•

#define USER_INPUT_MAX_LENGTH 20
char buffer[USER_INPUT_MAX_LENGTH];
bool isAdmin = false;
gets(buffer);

| PV286 - Secure coding42

!

https://crocs.fi.muni.cz @CRoCS_MUNI

Motivation problem

• Quiz – what is insecure in given program?

• Can you come up with attack?

• Classic buffer overflow

• Detailed exploitation demo during labs this week

#define USER_INPUT_MAX_LENGTH 20
char buffer[USER_INPUT_MAX_LENGTH];
bool isAdmin = false;
gets(buffer);

| PV286 - Secure coding42

!

https://crocs.fi.muni.cz @CRoCS_MUNI

Process memory layout

http://www.drdobbs.com/security/anatomy-of-a-stack-smashing-attack-and-h/240001832#

| PV286 - Secure coding43

https://crocs.fi.muni.cz @CRoCS_MUNI

Stack memory layout

http://www.drdobbs.com/security/anatomy-of-a-stack-smashing-attack-and-h/240001832#

| PV286 - Secure coding44

https://crocs.fi.muni.cz @CRoCS_MUNI

Stack overflow

http://www.drdobbs.com/security/anatomy-of-a-stack-smashing-attack-and-h/240001832#

| PV286 - Secure coding45

https://crocs.fi.muni.cz @CRoCS_MUNI

Stack overflow

http://www.drdobbs.com/security/anatomy-of-a-stack-smashing-attack-and-h/240001832#

| PV286 - Secure coding45

https://crocs.fi.muni.cz @CRoCS_MUNI

Type-overflow vulnerabilities - motivation

• Quiz – what is insecure in given program?

• Can you come up with attack?

•

for (unsigned char i = 10; i >= 0; i--) {

/* ... */

}

| PV286 - Secure coding47

!

https://crocs.fi.muni.cz @CRoCS_MUNI

Type-overflow vulnerabilities - motivation

• Quiz – what is insecure in given program?

• Can you come up with attack?

• And what about following variant?

for (unsigned char i = 10; i >= 0; i--) {

/* ... */

}

for (char i = 10; i >= 0; i--) {

/* ... */

}

| PV286 - Secure coding47

!

https://crocs.fi.muni.cz @CRoCS_MUNI

Type-overflow vulnerabilities - motivation

• Quiz – what is insecure in given program?

• Can you come up with attack?

• And what about following variant?

– Be aware: char can be both signed (x64) or unsigned (ARM)

for (unsigned char i = 10; i >= 0; i--) {

/* ... */

}

for (char i = 10; i >= 0; i--) {

/* ... */

}

| PV286 - Secure coding47

!

https://crocs.fi.muni.cz @CRoCS_MUNI

Type overflow – basic problem

• Types are having limited range for the values

– char: 256 values, int: 232 values

– add, multiplication can reach lower/upper limit

– char value = 250 + 10 == ?

•

•

•

| PV286 - Secure coding48

https://crocs.fi.muni.cz @CRoCS_MUNI

Type overflow – basic problem

• Types are having limited range for the values

– char: 256 values, int: 232 values

– add, multiplication can reach lower/upper limit

– char value = 250 + 10 == ?

• Signed vs. unsigned types
– for (unsigned char i = 10; i >= 0; i--) {/* ... */ }

•

•

| PV286 - Secure coding48

https://crocs.fi.muni.cz @CRoCS_MUNI

Type overflow – basic problem

• Types are having limited range for the values

– char: 256 values, int: 232 values

– add, multiplication can reach lower/upper limit

– char value = 250 + 10 == ?

• Signed vs. unsigned types
– for (unsigned char i = 10; i >= 0; i--) {/* ... */ }

• Type value will underflow/overflow

– CPU overflow flag is set

– but without active checking not detected in program

•

| PV286 - Secure coding48

https://crocs.fi.muni.cz @CRoCS_MUNI

Type overflow – basic problem

• Types are having limited range for the values

– char: 256 values, int: 232 values

– add, multiplication can reach lower/upper limit

– char value = 250 + 10 == ?

• Signed vs. unsigned types
– for (unsigned char i = 10; i >= 0; i--) {/* ... */ }

• Type value will underflow/overflow

– CPU overflow flag is set

– but without active checking not detected in program

• Occurs also in higher-level languages (Java…)

| PV286 - Secure coding48

https://crocs.fi.muni.cz @CRoCS_MUNI

EXAMPLE: MAKE HUGE MONEY WITH

TYPE OVERFLOW

| PV286 - Secure coding49

https://crocs.fi.muni.cz @CRoCS_MUNI

Make HUGE money with type overflow

• Bitcoin block 74638 (15th August 2010)

| PV286 - Secure coding50

https://crocs.fi.muni.cz @CRoCS_MUNI

Make HUGE money with type overflow

• Bitcoin block 74638 (15th August 2010)

CBlock(hash=0000000000790ab3, ver=1, hashPrevBlock=0000000000606865, hashMerkleRoot
nTime=1281891957, nBits=1c00800e, nNonce=28192719, vtx=2)

CTransaction(hash=012cd8, ver=1, vin.size=1, vout.size=1, nLockTime=0)
CTxIn(COutPoint(000000, -1), coinbase 040e80001c028f00)
CTxOut(nValue= 50.51000000, scriptPubKey=0x4F4BA55D1580F8C3A8A2C7)

CTransaction(hash=1d5e51, ver=1, vin.size=1, vout.size=2, nLockTime=0)
CTxIn(COutPoint(237fe8, 0), scriptSig=0xA87C02384E1F184B79C6AC)
CTxOut(nValue=92233720368.54275808, scriptPubKey=OP_DUP OP_HASH160 0xB7A7
CTxOut(nValue=92233720368.54275808, scriptPubKey=OP_DUP OP_HASH160 0x1512

vMerkleTree: 012cd8 1d5e51 618eba

Block hash: 0000000000790ab3f22ec756ad43b6ab569abf0bddeb97c67a6f7b1470a7ec1c
Transaction hash: 1d5e512a9723cbef373b970eb52f1e9598ad67e7408077a82fdac194b65333c9

| PV286 - Secure coding50

https://crocs.fi.muni.cz @CRoCS_MUNI

Make HUGE money with type overflow

• Bitcoin block 74638 (15th August 2010)

CBlock(hash=0000000000790ab3, ver=1, hashPrevBlock=0000000000606865, hashMerkleRoot
nTime=1281891957, nBits=1c00800e, nNonce=28192719, vtx=2)

CTransaction(hash=012cd8, ver=1, vin.size=1, vout.size=1, nLockTime=0)
CTxIn(COutPoint(000000, -1), coinbase 040e80001c028f00)
CTxOut(nValue= 50.51000000, scriptPubKey=0x4F4BA55D1580F8C3A8A2C7)

CTransaction(hash=1d5e51, ver=1, vin.size=1, vout.size=2, nLockTime=0)
CTxIn(COutPoint(237fe8, 0), scriptSig=0xA87C02384E1F184B79C6AC)
CTxOut(nValue=92233720368.54275808, scriptPubKey=OP_DUP OP_HASH160 0xB7A7
CTxOut(nValue=92233720368.54275808, scriptPubKey=OP_DUP OP_HASH160 0x1512

vMerkleTree: 012cd8 1d5e51 618eba

Block hash: 0000000000790ab3f22ec756ad43b6ab569abf0bddeb97c67a6f7b1470a7ec1c
Transaction hash: 1d5e512a9723cbef373b970eb52f1e9598ad67e7408077a82fdac194b65333c9

| PV286 - Secure coding50

https://crocs.fi.muni.cz @CRoCS_MUNI

Make HUGE money with type overflow

• Bitcoin block 74638 (15th August 2010)

CBlock(hash=0000000000790ab3, ver=1, hashPrevBlock=0000000000606865, hashMerkleRoot
nTime=1281891957, nBits=1c00800e, nNonce=28192719, vtx=2)

CTransaction(hash=012cd8, ver=1, vin.size=1, vout.size=1, nLockTime=0)
CTxIn(COutPoint(000000, -1), coinbase 040e80001c028f00)
CTxOut(nValue= 50.51000000, scriptPubKey=0x4F4BA55D1580F8C3A8A2C7)

CTransaction(hash=1d5e51, ver=1, vin.size=1, vout.size=2, nLockTime=0)
CTxIn(COutPoint(237fe8, 0), scriptSig=0xA87C02384E1F184B79C6AC)
CTxOut(nValue=92233720368.54275808, scriptPubKey=OP_DUP OP_HASH160 0xB7A7
CTxOut(nValue=92233720368.54275808, scriptPubKey=OP_DUP OP_HASH160 0x1512

vMerkleTree: 012cd8 1d5e51 618eba

Block hash: 0000000000790ab3f22ec756ad43b6ab569abf0bddeb97c67a6f7b1470a7ec1c
Transaction hash: 1d5e512a9723cbef373b970eb52f1e9598ad67e7408077a82fdac194b65333c9

Mining block reward

(was 50BTC at 2010, now smaller)

| PV286 - Secure coding50

https://crocs.fi.muni.cz @CRoCS_MUNI

Make HUGE money with type overflow

• Bitcoin block 74638 (15th August 2010)

CBlock(hash=0000000000790ab3, ver=1, hashPrevBlock=0000000000606865, hashMerkleRoot
nTime=1281891957, nBits=1c00800e, nNonce=28192719, vtx=2)

CTransaction(hash=012cd8, ver=1, vin.size=1, vout.size=1, nLockTime=0)
CTxIn(COutPoint(000000, -1), coinbase 040e80001c028f00)
CTxOut(nValue= 50.51000000, scriptPubKey=0x4F4BA55D1580F8C3A8A2C7)

CTransaction(hash=1d5e51, ver=1, vin.size=1, vout.size=2, nLockTime=0)
CTxIn(COutPoint(237fe8, 0), scriptSig=0xA87C02384E1F184B79C6AC)
CTxOut(nValue=92233720368.54275808, scriptPubKey=OP_DUP OP_HASH160 0xB7A7
CTxOut(nValue=92233720368.54275808, scriptPubKey=OP_DUP OP_HASH160 0x1512

vMerkleTree: 012cd8 1d5e51 618eba

Block hash: 0000000000790ab3f22ec756ad43b6ab569abf0bddeb97c67a6f7b1470a7ec1c
Transaction hash: 1d5e512a9723cbef373b970eb52f1e9598ad67e7408077a82fdac194b65333c9

Mining block reward

(was 50BTC at 2010, now smaller)

| PV286 - Secure coding50

https://crocs.fi.muni.cz @CRoCS_MUNI

Make HUGE money with type overflow

• Bitcoin block 74638 (15th August 2010)

CBlock(hash=0000000000790ab3, ver=1, hashPrevBlock=0000000000606865, hashMerkleRoot
nTime=1281891957, nBits=1c00800e, nNonce=28192719, vtx=2)

CTransaction(hash=012cd8, ver=1, vin.size=1, vout.size=1, nLockTime=0)
CTxIn(COutPoint(000000, -1), coinbase 040e80001c028f00)
CTxOut(nValue= 50.51000000, scriptPubKey=0x4F4BA55D1580F8C3A8A2C7)

CTransaction(hash=1d5e51, ver=1, vin.size=1, vout.size=2, nLockTime=0)
CTxIn(COutPoint(237fe8, 0), scriptSig=0xA87C02384E1F184B79C6AC)
CTxOut(nValue=92233720368.54275808, scriptPubKey=OP_DUP OP_HASH160 0xB7A7
CTxOut(nValue=92233720368.54275808, scriptPubKey=OP_DUP OP_HASH160 0x1512

vMerkleTree: 012cd8 1d5e51 618eba

Block hash: 0000000000790ab3f22ec756ad43b6ab569abf0bddeb97c67a6f7b1470a7ec1c
Transaction hash: 1d5e512a9723cbef373b970eb52f1e9598ad67e7408077a82fdac194b65333c9

Input transaction (with 0.5BTC)
https://blockexplorer.com/tx/237fe8348fc77ace11049931

058abb034c99698c7fe99b1cc022b1365a705d39

Mining block reward

(was 50BTC at 2010, now smaller)

| PV286 - Secure coding50

https://blockexplorer.com/tx/237fe8348fc77ace11049931058abb034c99698c7fe99b1cc022b1365a705d39
https://blockexplorer.com/tx/237fe8348fc77ace11049931058abb034c99698c7fe99b1cc022b1365a705d39

https://crocs.fi.muni.cz @CRoCS_MUNI

Make HUGE money with type overflow

• Bitcoin block 74638 (15th August 2010)

CBlock(hash=0000000000790ab3, ver=1, hashPrevBlock=0000000000606865, hashMerkleRoot
nTime=1281891957, nBits=1c00800e, nNonce=28192719, vtx=2)

CTransaction(hash=012cd8, ver=1, vin.size=1, vout.size=1, nLockTime=0)
CTxIn(COutPoint(000000, -1), coinbase 040e80001c028f00)
CTxOut(nValue= 50.51000000, scriptPubKey=0x4F4BA55D1580F8C3A8A2C7)

CTransaction(hash=1d5e51, ver=1, vin.size=1, vout.size=2, nLockTime=0)
CTxIn(COutPoint(237fe8, 0), scriptSig=0xA87C02384E1F184B79C6AC)
CTxOut(nValue=92233720368.54275808, scriptPubKey=OP_DUP OP_HASH160 0xB7A7
CTxOut(nValue=92233720368.54275808, scriptPubKey=OP_DUP OP_HASH160 0x1512

vMerkleTree: 012cd8 1d5e51 618eba

Block hash: 0000000000790ab3f22ec756ad43b6ab569abf0bddeb97c67a6f7b1470a7ec1c
Transaction hash: 1d5e512a9723cbef373b970eb52f1e9598ad67e7408077a82fdac194b65333c9

Input transaction (with 0.5BTC)
https://blockexplorer.com/tx/237fe8348fc77ace11049931

058abb034c99698c7fe99b1cc022b1365a705d39

Mining block reward

(was 50BTC at 2010, now smaller)

2 output transactions (each with 9*1010 BTC) !!!

| PV286 - Secure coding50

https://blockexplorer.com/tx/237fe8348fc77ace11049931058abb034c99698c7fe99b1cc022b1365a705d39
https://blockexplorer.com/tx/237fe8348fc77ace11049931058abb034c99698c7fe99b1cc022b1365a705d39

https://crocs.fi.muni.cz @CRoCS_MUNI

Make HUGE money with type overflow

• Bitcoin block 74638 (15th August 2010)

CBlock(hash=0000000000790ab3, ver=1, hashPrevBlock=0000000000606865, hashMerkleRoot
nTime=1281891957, nBits=1c00800e, nNonce=28192719, vtx=2)

CTransaction(hash=012cd8, ver=1, vin.size=1, vout.size=1, nLockTime=0)
CTxIn(COutPoint(000000, -1), coinbase 040e80001c028f00)
CTxOut(nValue= 50.51000000, scriptPubKey=0x4F4BA55D1580F8C3A8A2C7)

CTransaction(hash=1d5e51, ver=1, vin.size=1, vout.size=2, nLockTime=0)
CTxIn(COutPoint(237fe8, 0), scriptSig=0xA87C02384E1F184B79C6AC)
CTxOut(nValue=92233720368.54275808, scriptPubKey=OP_DUP OP_HASH160 0xB7A7
CTxOut(nValue=92233720368.54275808, scriptPubKey=OP_DUP OP_HASH160 0x1512

vMerkleTree: 012cd8 1d5e51 618eba

Block hash: 0000000000790ab3f22ec756ad43b6ab569abf0bddeb97c67a6f7b1470a7ec1c
Transaction hash: 1d5e512a9723cbef373b970eb52f1e9598ad67e7408077a82fdac194b65333c9

Input transaction (with 0.5BTC)
https://blockexplorer.com/tx/237fe8348fc77ace11049931

058abb034c99698c7fe99b1cc022b1365a705d39

Mining block reward

(was 50BTC at 2010, now smaller)

2 output transactions (each with 9*1010 BTC) !!!

Should have been rejected by miners as

value(output) >> value(input), but was not!

| PV286 - Secure coding50

https://blockexplorer.com/tx/237fe8348fc77ace11049931058abb034c99698c7fe99b1cc022b1365a705d39
https://blockexplorer.com/tx/237fe8348fc77ace11049931058abb034c99698c7fe99b1cc022b1365a705d39

https://crocs.fi.muni.cz @CRoCS_MUNI

Bug dissection

• Bitcoin code uses integer encoding of numbers with
fixed position of decimal point (INT64)

– Smallest fraction of BTC is one Satoshi (sat) = 1/108 BTC

– 33.54 BTC == 33.54 * 108 => 3354000000

•

•

•

•

| PV286 - Secure coding52

https://crocs.fi.muni.cz @CRoCS_MUNI

Bug dissection

• Bitcoin code uses integer encoding of numbers with
fixed position of decimal point (INT64)

– Smallest fraction of BTC is one Satoshi (sat) = 1/108 BTC

– 33.54 BTC == 33.54 * 108 => 3354000000

• BTW: Why using float numbers is not a good idea?

•

•

•

| PV286 - Secure coding52

https://crocs.fi.muni.cz @CRoCS_MUNI

Bug dissection

• Bitcoin code uses integer encoding of numbers with
fixed position of decimal point (INT64)

– Smallest fraction of BTC is one Satoshi (sat) = 1/108 BTC

– 33.54 BTC == 33.54 * 108 => 3354000000

• BTW: Why using float numbers is not a good idea?

• CTxOut value:92233720368.54275808 BTC

= 0x7ffffffffff85ee0

•

•

| PV286 - Secure coding52

https://crocs.fi.muni.cz @CRoCS_MUNI

Bug dissection

• Bitcoin code uses integer encoding of numbers with
fixed position of decimal point (INT64)

– Smallest fraction of BTC is one Satoshi (sat) = 1/108 BTC

– 33.54 BTC == 33.54 * 108 => 3354000000

• BTW: Why using float numbers is not a good idea?

• CTxOut value:92233720368.54275808 BTC

= 0x7ffffffffff85ee0

• INT64_MAX = 0x7fffffffffffffff

•

| PV286 - Secure coding52

https://crocs.fi.muni.cz @CRoCS_MUNI

Bug dissection

• Bitcoin code uses integer encoding of numbers with
fixed position of decimal point (INT64)

– Smallest fraction of BTC is one Satoshi (sat) = 1/108 BTC

– 33.54 BTC == 33.54 * 108 => 3354000000

• BTW: Why using float numbers is not a good idea?

• CTxOut value:92233720368.54275808 BTC

= 0x7ffffffffff85ee0

• INT64_MAX = 0x7fffffffffffffff

• Sum of 2 CTx = 0xfffffffffff0bdc0 (overflow)

= -100000010
= -0.01BTC

| PV286 - Secure coding52

https://crocs.fi.muni.cz @CRoCS_MUNI

Bug dissection

• Bitcoin code uses integer encoding of numbers with
fixed position of decimal point (INT64)

– Smallest fraction of BTC is one Satoshi (sat) = 1/108 BTC

– 33.54 BTC == 33.54 * 108 => 3354000000

• BTW: Why using float numbers is not a good idea?

• CTxOut value:92233720368.54275808 BTC

= 0x7ffffffffff85ee0

• INT64_MAX = 0x7fffffffffffffff

• Sum of 2 CTx = 0xfffffffffff0bdc0 (overflow)

= -100000010
= -0.01BTC

– Difference between input & output interpreted as miner fee

| PV286 - Secure coding52

https://crocs.fi.muni.cz @CRoCS_MUNI

Type overflow – Bitcoin
#include <iostream>
#include <iomanip>
using namespace std;
// Works for Visual Studio compiler, replace __int64 with int64 for other compilers
int main() {

const __int64 valueMaxInt64 = 0x7fffffffffffffffLL;
const float COIN = 100000000; // should be __int64 as well, made float for simple printing

__int64 valueIn = 50000000; // value of input transaction CTxIn

cout << "CTxIn = " << valueIn / COIN << endl;
__int64 valueOut1 = 9223372036854275808L; // first out

cout << "CTxOut1 = " << valueOut1 / COIN << endl;
__int64 valueOut2 = 9223372036854275808L; // second out

cout << "CTxOut2 = " << valueOut2 / COIN << endl;

__int64 valueOutSum = valueOut1 + valueOut2; // sum which overflow

cout << "CTxOut sum = " << valueOutSum / COIN << endl;
// Difference between input and output is interpreted as fee for a miner (0.01 BTC)
__int64 fee = valueIn - valueOutSum;
cout << "Miner fee = " << fee / COIN << endl;
return 0;

}

Try this at hom
e!

| PV286 - Secure coding53

https://crocs.fi.muni.cz @CRoCS_MUNI

BugFix – proper checking for overflow
https://github.com/bitcoin/bitcoin/commit/d4c6b90ca3f9b47adb1b2724a0c3514f80635c84#diff-118fcbaaba162ba17933c7893247df3aR1013

| PV286 - Secure coding55

https://github.com/bitcoin/bitcoin/commit/d4c6b90ca3f9b47adb1b2724a0c3514f80635c84#diff-118fcbaaba162ba17933c7893247df3aR1013

https://crocs.fi.muni.cz @CRoCS_MUNI

Questions

• When exactly overflow happens?

• Why mining reward was 50.51 and not exactly 50?

– CTxOut(nValue= 50.51000000

• How to check for type overflow?

Try this at hom
e!

| PV286 - Secure coding56

https://crocs.fi.muni.cz @CRoCS_MUNI

SOURCE CODE PROTECTIONS

COMPILER PROTECTIONS

PLATFORM PROTECTIONS

| PV286 - Secure coding59

https://crocs.fi.muni.cz @CRoCS_MUNI

Safe add and mult operations in C/C++

• Compiler-specific non-standard extensions of C/C++

• GCC: __builtin_add_overflow, __builtin_mul_overflow …

– Result returned as third (pointer passed) argument

– Returns true if overflow occurs

– https://gcc.gnu.org/onlinedocs/gcc/Integer-Overflow-Builtins.html

•

bool __builtin_add_overflow (type1 a, type2 b, type3 *res)

| PV286 - Secure coding60

https://gcc.gnu.org/onlinedocs/gcc/Integer-Overflow-Builtins.html
https://learn.microsoft.com/en-us/cpp/safeint/safeint-library?view=msvc-170

https://crocs.fi.muni.cz @CRoCS_MUNI

Safe add and mult operations in C/C++

• Compiler-specific non-standard extensions of C/C++

• GCC: __builtin_add_overflow, __builtin_mul_overflow …

– Result returned as third (pointer passed) argument

– Returns true if overflow occurs

– https://gcc.gnu.org/onlinedocs/gcc/Integer-Overflow-Builtins.html

• MSVC: SafeInt wrapper template (for int, char…)

– Overloaded all common operations (drop in replacement)

– Returns SafeIntException if overflow/underflow

– https://learn.microsoft.com/en-us/cpp/safeint/safeint-library?view=msvc-170

bool __builtin_add_overflow (type1 a, type2 b, type3 *res)

| PV286 - Secure coding60

https://gcc.gnu.org/onlinedocs/gcc/Integer-Overflow-Builtins.html
https://learn.microsoft.com/en-us/cpp/safeint/safeint-library?view=msvc-170

https://crocs.fi.muni.cz @CRoCS_MUNI

Safe add and mult operations in C/C++

• Compiler-specific non-standard extensions of C/C++

• GCC: __builtin_add_overflow, __builtin_mul_overflow …

– Result returned as third (pointer passed) argument

– Returns true if overflow occurs

– https://gcc.gnu.org/onlinedocs/gcc/Integer-Overflow-Builtins.html

• MSVC: SafeInt wrapper template (for int, char…)

– Overloaded all common operations (drop in replacement)

– Returns SafeIntException if overflow/underflow

– https://learn.microsoft.com/en-us/cpp/safeint/safeint-library?view=msvc-170

bool __builtin_add_overflow (type1 a, type2 b, type3 *res)

#include <safeint.h>
using namespace msl::utilities; // Normal use

SafeInt<int> c1 = 1; SafeInt<int> c2 = 2; c1 = c1 + c2;

| PV286 - Secure coding60

https://gcc.gnu.org/onlinedocs/gcc/Integer-Overflow-Builtins.html
https://learn.microsoft.com/en-us/cpp/safeint/safeint-library?view=msvc-170

https://crocs.fi.muni.cz @CRoCS_MUNI

Safe add and mult operations in Java

• Java SE 8 introduces extensions to java.lang.Math

• ArithmeticException thrown if overflow/underflow

| PV286 - Secure coding61

https://crocs.fi.muni.cz @CRoCS_MUNI

Safe add and mult operations in Java

• Java SE 8 introduces extensions to java.lang.Math

• ArithmeticException thrown if overflow/underflow

public static int addExact(int x, int y)
public static long addExact(long x, long y)
public static int decrementExact(int a)
public static long decrementExact(long a)
public static int incrementExact(int a)
public static long incrementExact(long a)
public static int multiplyExact(int x, int y)
public static long multiplyExact(long x, long y)
public static int negateExact(int a)
public static long negateExact(long a)
public static int subtractExact(int x, int y)
public static long subtractExact(long x, long y)
public static int toIntExact(long value)

| PV286 - Secure coding61

https://crocs.fi.muni.cz @CRoCS_MUNI

Format string vulnerabilities - motivation

• Quiz – what is insecure in given program?

• Can you come up with attack?

int main(int argc, char * argv[]) {

printf(argv[1]);

return 0;

}

| PV286 - Secure coding62

https://crocs.fi.muni.cz @CRoCS_MUNI

Format string vulnerabilities

• Wide class of functions accepting format string

– printf("%s", X);

– resulting string is returned to user (= potential attacker)

– formatting string can be under attacker’s control

– variables formatted into string can be controlled

•

| PV286 - Secure coding63

https://crocs.fi.muni.cz @CRoCS_MUNI

Format string vulnerabilities

• Wide class of functions accepting format string

– printf("%s", X);

– resulting string is returned to user (= potential attacker)

– formatting string can be under attacker’s control

– variables formatted into string can be controlled

• Resulting vulnerability

– memory content from stack is formatted into string

– possibly any memory if attacker control buffer pointer

| PV286 - Secure coding63

https://crocs.fi.muni.cz @CRoCS_MUNI

Information disclosure vulnerabilities

• Exploitable memory vulnerability leading to read access (not write access)

– attacker learns some information from the memory

• Direct exploitation

– secret information (cryptographic key, password...)

•

| PV286 - Secure coding64

https://crocs.fi.muni.cz @CRoCS_MUNI

Information disclosure vulnerabilities

• Exploitable memory vulnerability leading to read access (not write access)

– attacker learns some information from the memory

• Direct exploitation

– secret information (cryptographic key, password...)

• Precursor for next step (very important with DEP&ASLR)

– module version

– current memory layout after ASLR (stack/heap pointers)

– stack protection cookies (/GS)

| PV286 - Secure coding64

https://crocs.fi.muni.cz @CRoCS_MUNI

Format string vulnerability - example

• Example retrieval of security cookie and return address

int main(int argc, char* argv[]) {
char buf[64] = {};
sprintf(buf, argv[1]);
printf("%s\n", buf);
return 0;

}

| PV286 - Secure coding65

!

https://crocs.fi.muni.cz @CRoCS_MUNI

Format string vulnerability - example

• Example retrieval of security cookie and return address

int main(int argc, char* argv[]) {
char buf[64] = {};
sprintf(buf, argv[1]);
printf("%s\n", buf);
return 0;

}
argv[1] submitted by an attacker

E.g., %x%x%x….%x

Stack content is printed

Including security cookie and RA

| PV286 - Secure coding65

!

https://crocs.fi.muni.cz @CRoCS_MUNI

Format string vulnerability - example

• Example retrieval of security cookie and return address

int main(int argc, char* argv[]) {
char buf[64] = {};
sprintf(buf, argv[1]);
printf("%s\n", buf);
return 0;

}
argv[1] submitted by an attacker

E.g., %x%x%x….%x

Stack content is printed

Including security cookie and RA

Don’t let user/attacker

to provide own

formatting strings

| PV286 - Secure coding65

!

https://crocs.fi.muni.cz @CRoCS_MUNI

Non-terminating functions - example

• What is wrong with following code?

int main(int argc, char* argv[]) {

char buf[16];

strncpy(buf, argv[1], sizeof(buf));

return printf("%s\n",buf);

}

| PV286 - Secure coding66

!

https://crocs.fi.muni.cz @CRoCS_MUNI

strncpy - manual

http://www.cplusplus.com/reference/cstring/strncpy/?kw=strncpy

| PV286 - Secure coding67

https://crocs.fi.muni.cz @CRoCS_MUNI

strncpy - manual

http://www.cplusplus.com/reference/cstring/strncpy/?kw=strncpy

| PV286 - Secure coding67

https://crocs.fi.muni.cz @CRoCS_MUNI

Non-terminating functions for strings

• strncpy

• snprintf

• vsnprintf

• mbstowcs

• MultiByteToWideChar

•

• wcsncpy

• snwprintf

• vsnwprintf

• wcstombs

• WideCharToMultiByte

| PV286 - Secure coding68

https://crocs.fi.muni.cz @CRoCS_MUNI

Non-terminating functions for strings

• strncpy

• snprintf

• vsnprintf

• mbstowcs

• MultiByteToWideChar

• Non-null terminated Unicode string more dangerous

– C-string processing stops on first zero

– any binary zero (ASCII)

– 16-bit aligned wide zero character (UNICODE)

• wcsncpy

• snwprintf

• vsnwprintf

• wcstombs

• WideCharToMultiByte

| PV286 - Secure coding68

https://crocs.fi.muni.cz @CRoCS_MUNI

Non-terminating functions for strings

• strncpy

• snprintf

• vsnprintf

• mbstowcs

• MultiByteToWideChar

• Non-null terminated Unicode string more dangerous

– C-string processing stops on first zero

– any binary zero (ASCII)

– 16-bit aligned wide zero character (UNICODE)

• wcsncpy

• snwprintf

• vsnwprintf

• wcstombs

• WideCharToMultiByte

Null termination specific for C, but

terminating/separating characters

relevant in any other language

| PV286 - Secure coding68

https://crocs.fi.muni.cz @CRoCS_MUNI

Heap overflow

Linked list between allocated blocks

Felix "FX" Lindner, http://www.h-online.com/security/features/A-Heap-of-Risk-747220.html
| PV286 - Secure coding69

https://crocs.fi.muni.cz @CRoCS_MUNI

Heap overflow

Linked list between allocated blocks

Felix "FX" Lindner, http://www.h-online.com/security/features/A-Heap-of-Risk-747220.html
| PV286 - Secure coding69

https://crocs.fi.muni.cz @CRoCS_MUNI

Heap overflow
Buffer overflow in

allocation 1 overwrites

header for allocation 2

(and possibly other)

Linked list between allocated blocks

Felix "FX" Lindner, http://www.h-online.com/security/features/A-Heap-of-Risk-747220.html
| PV286 - Secure coding69

https://crocs.fi.muni.cz @CRoCS_MUNI

Heap overflow
Buffer overflow in

allocation 1 overwrites

header for allocation 2

(and possibly other)

Linked list between allocated blocks

Felix "FX" Lindner, http://www.h-online.com/security/features/A-Heap-of-Risk-747220.html

Corrupted allocation 2 data are later

processed by unlink() function

| PV286 - Secure coding69

https://crocs.fi.muni.cz @CRoCS_MUNI

Secure C library – selected functions

• Formatted input/output functions

– gets_s

– scanf_s, wscanf_s, fscanf_s, fwscanf_s, sscanf_s, swscanf_s, vfscanf_s, vfwscanf_s,

vscanf_s, vwscanf_s, vsscanf_s, vswscanf_s

– fprintf_s, fwprintf_s, printf_s, printf_s, snprintf_s, snwprintf_s, sprintf_s, swprintf_s,

vfprintf_s, vfwprintf_s, vprintf_s, vwprintf_s, vsnprintf_s, vsnwprintf_s, vsprintf_s, vswprintf_s

– functions take additional argument with buffer length

•

char *gets(

char *buffer

);

char *gets_s(

char *buffer,

size_t sizeInCharacters

);

| PV286 - Secure coding71

https://crocs.fi.muni.cz @CRoCS_MUNI

Secure C library – selected functions

• Formatted input/output functions

– gets_s

– scanf_s, wscanf_s, fscanf_s, fwscanf_s, sscanf_s, swscanf_s, vfscanf_s, vfwscanf_s,

vscanf_s, vwscanf_s, vsscanf_s, vswscanf_s

– fprintf_s, fwprintf_s, printf_s, printf_s, snprintf_s, snwprintf_s, sprintf_s, swprintf_s,

vfprintf_s, vfwprintf_s, vprintf_s, vwprintf_s, vsnprintf_s, vsnwprintf_s, vsprintf_s, vswprintf_s

– functions take additional argument with buffer length

• File-related functions

– tmpfile_s, tmpnam_s, fopen_s, freopen_s

• takes pointer to resulting file handle as parameter

• return error code

char *gets(

char *buffer

);

char *gets_s(

char *buffer,

size_t sizeInCharacters

);

| PV286 - Secure coding71

https://crocs.fi.muni.cz @CRoCS_MUNI

Secure C library – selected functions

• Environment, utilities

– getenv_s, wgetenv_s

– bsearch_s, qsort_s

• Memory copy functions

– memcpy_s, memmove_s, strcpy_s, wcscpy_s, strncpy_s, wcsncpy_s

• Concatenation functions

– strcat_s, wcscat_s, strncat_s, wcsncat_s

• Search functions

– strtok_s, wcstok_s

• Time manipulation functions...

| PV286 - Secure coding72

https://crocs.fi.muni.cz @CRoCS_MUNI

Secure C library

• Secure versions of commonly misused functions

– bounds checking for string handling functions

– better error handling

• Also added to new C standard ISO/IEC 9899:2011

• Microsoft Security-Enhanced Versions of CRT Functions

– MSVC compiler issue warning C4996, more functions then in C11

• Secure C Library
– http://docwiki.embarcadero.com/RADStudio/XE3/en/Secure_C_Library

– https://docs.microsoft.com/en-us/cpp/c-runtime-library/security-enhanced-versions-of-crt-functions

– https://docs.microsoft.com/en-us/cpp/c-runtime-library/security-features-in-the-crt

– http://www.drdobbs.com/cpp/the-new-c-standard-explored/232901670

| PV286 - Secure coding74

http://docwiki.embarcadero.com/RADStudio/XE3/en/Secure_C_Library
https://docs.microsoft.com/en-us/cpp/c-runtime-library/security-enhanced-versions-of-crt-functions
https://docs.microsoft.com/en-us/cpp/c-runtime-library/security-features-in-the-crt
http://www.drdobbs.com/cpp/the-new-c-standard-explored/232901670

https://crocs.fi.muni.cz @CRoCS_MUNI

SOURCE CODE PROTECTIONS

COMPILER PROTECTIONS

PLATFORM PROTECTIONS

| PV286 - Secure coding75

https://crocs.fi.muni.cz @CRoCS_MUNI

Stack without canary word

http://www.drdobbs.com/security/anatomy-of-a-stack-smashing-attack-and-h/240001832#
| PV286 - Secure coding77

!

https://crocs.fi.muni.cz @CRoCS_MUNI

Stack without canary word

http://www.drdobbs.com/security/anatomy-of-a-stack-smashing-attack-and-h/240001832#

Canary word (CY)

| PV286 - Secure coding77

!

https://crocs.fi.muni.cz @CRoCS_MUNI

– randomized cookie

between local variables

and return address

– function prolog (add

security cookie)

– and epilog (check

cookie)

Stack without canary word

http://www.drdobbs.com/security/anatomy-of-a-stack-smashing-attack-and-h/240001832#

Canary word (CY)

| PV286 - Secure coding77

!

https://crocs.fi.muni.cz @CRoCS_MUNI

– randomized cookie

between local variables

and return address

– function prolog (add

security cookie)

– and epilog (check

cookie)

Stack without canary word

http://www.drdobbs.com/security/anatomy-of-a-stack-smashing-attack-and-h/240001832#

Canary word (CY)

| PV286 - Secure coding77

!

https://crocs.fi.muni.cz @CRoCS_MUNI

MSVC Compiler security flags - /GS

• /GS switch (added from 2003, improves in time)

– http://msdn.microsoft.com/en-us/library/8dbf701c.aspx

– multiple different protections against buffer overflow

– mostly focused on stack protection

•

•

| PV286 - Secure coding78

http://msdn.microsoft.com/en-us/library/8dbf701c.aspx

https://crocs.fi.muni.cz @CRoCS_MUNI

MSVC Compiler security flags - /GS

• /GS switch (added from 2003, improves in time)

– http://msdn.microsoft.com/en-us/library/8dbf701c.aspx

– multiple different protections against buffer overflow

– mostly focused on stack protection

• /GS protects:

– return address of function

– address of exception handler

– vulnerable function parameters (arguments)

– some of the local buffers (GS buffers)

•

| PV286 - Secure coding78

http://msdn.microsoft.com/en-us/library/8dbf701c.aspx

https://crocs.fi.muni.cz @CRoCS_MUNI

MSVC Compiler security flags - /GS

• /GS switch (added from 2003, improves in time)

– http://msdn.microsoft.com/en-us/library/8dbf701c.aspx

– multiple different protections against buffer overflow

– mostly focused on stack protection

• /GS protects:

– return address of function

– address of exception handler

– vulnerable function parameters (arguments)

– some of the local buffers (GS buffers)

• /GS protection is (automatically) added only when needed

– to limit performance impact, decided by compiler (/GS rules)

– #pragma strict_gs_check(on) - enforce strict rules application

| PV286 - Secure coding78

http://msdn.microsoft.com/en-us/library/8dbf701c.aspx

https://crocs.fi.muni.cz @CRoCS_MUNI

MSVC Compiler security flags - /GS

• /GS switch (added from 2003, improves in time)

– http://msdn.microsoft.com/en-us/library/8dbf701c.aspx

– multiple different protections against buffer overflow

– mostly focused on stack protection

• /GS protects:

– return address of function

– address of exception handler

– vulnerable function parameters (arguments)

– some of the local buffers (GS buffers)

• /GS protection is (automatically) added only when needed

– to limit performance impact, decided by compiler (/GS rules)

– #pragma strict_gs_check(on) - enforce strict rules application

/GS is applied in both

DEBUG and RELEASE

modes

| PV286 - Secure coding78

http://msdn.microsoft.com/en-us/library/8dbf701c.aspx

https://crocs.fi.muni.cz @CRoCS_MUNI

/GS – what is NOT protected

• /GS compiler option does not protect against all buffer overrun

security attacks

• Corruption of address in vtable

– (table of addresses for virtual methods)

• Example: buffer and a vtable in an object, a buffer overrun could

corrupt the vtable

• Functions with variable arguments list (...)

| PV286 - Secure coding83

https://crocs.fi.muni.cz @CRoCS_MUNI

/GS – what is NOT protected

• /GS compiler option does not protect against all buffer overrun

security attacks

• Corruption of address in vtable

– (table of addresses for virtual methods)

• Example: buffer and a vtable in an object, a buffer overrun could

corrupt the vtable

• Functions with variable arguments list (...)

Automatic tools add vital protections, but are NOT

replacement for secure defensive programming

| PV286 - Secure coding83

https://crocs.fi.muni.cz @CRoCS_MUNI

GCC compiler - StackGuard & ProPolice

• StackGuard released in 1997 as extension to GCC

– but never included as official buffer overflow protection

•

| PV286 - Secure coding85

!

https://crocs.fi.muni.cz @CRoCS_MUNI

GCC compiler - StackGuard & ProPolice

• StackGuard released in 1997 as extension to GCC

– but never included as official buffer overflow protection

• GCC Stack-Smashing Protector (ProPolice)

– patch to GCC 3.x

– included in GCC 4.1 release

– -fstack-protector (string protection only)

– -fstack-protector-all (protection of all types)

– on some systems enabled by default (OpenBSD)

• -fno-stack-protector (disable protection)

| PV286 - Secure coding85

!

https://crocs.fi.muni.cz @CRoCS_MUNI

Example: Stack canary

| PV286 - Secure coding89

https://crocs.fi.muni.cz @CRoCS_MUNI

Example: Stack canary

| PV286 - Secure coding89

https://crocs.fi.muni.cz @CRoCS_MUNI

Example: Stack canary

| PV286 - Secure coding89

https://crocs.fi.muni.cz @CRoCS_MUNI

G
C

C
 -
f
s
t
a
c
k
-
p
r
o
t
e
c
t
o
r
-
a
l
l

Example: Stack canary

| PV286 - Secure coding89

https://crocs.fi.muni.cz @CRoCS_MUNI

G
C

C
 -
f
s
t
a
c
k
-
p
r
o
t
e
c
t
o
r
-
a
l
l

Example: Stack canary

| PV286 - Secure coding89

https://crocs.fi.muni.cz @CRoCS_MUNI

G
C

C
 -
f
s
t
a
c
k
-
p
r
o
t
e
c
t
o
r
-
a
l
l

Example: Stack canary

| PV286 - Secure coding89

https://crocs.fi.muni.cz @CRoCS_MUNI

G
C

C
 -
f
s
t
a
c
k
-
p
r
o
t
e
c
t
o
r
-
a
l
l

Example: Stack canary

| PV286 - Secure coding89

https://crocs.fi.muni.cz @CRoCS_MUNI

G
C

C
 -
f
s
t
a
c
k
-
p
r
o
t
e
c
t
o
r
-
a
l
l

Can an attacker still

bypass stack canary?

Example: Stack canary

| PV286 - Secure coding89

https://crocs.fi.muni.cz @CRoCS_MUNI

How to bypass stack protection cookie?

• Scenario:

– long-term running of daemon on server

– no exchange of cookie between calls

1.

2.

| PV286 - Secure coding91

!

https://crocs.fi.muni.cz @CRoCS_MUNI

How to bypass stack protection cookie?

• Scenario:

– long-term running of daemon on server

– no exchange of cookie between calls

1. Obtain security cookie by one call

2.

| PV286 - Secure coding91

!

https://crocs.fi.muni.cz @CRoCS_MUNI

How to bypass stack protection cookie?

• Scenario:

– long-term running of daemon on server

– no exchange of cookie between calls

1. Obtain security cookie by one call

– cookie is now known and can be incorporated into stack-smashing data

2.

| PV286 - Secure coding91

!

https://crocs.fi.muni.cz @CRoCS_MUNI

How to bypass stack protection cookie?

• Scenario:

– long-term running of daemon on server

– no exchange of cookie between calls

1. Obtain security cookie by one call

– cookie is now known and can be incorporated into stack-smashing data

2. Use second call to change only the return address

| PV286 - Secure coding91

!

https://crocs.fi.muni.cz @CRoCS_MUNI

How to bypass stack protection cookie?

• Scenario:

– long-term running of daemon on server

– no exchange of cookie between calls

1. Obtain security cookie by one call

– cookie is now known and can be incorporated into stack-smashing data

2. Use second call to change only the return address

What attacker can do with

changed return address?

| PV286 - Secure coding91

!

https://crocs.fi.muni.cz @CRoCS_MUNI

SOURCE CODE PROTECTIONS

COMPILER PROTECTIONS

PLATFORM PROTECTIONS

| PV286 - Secure coding92

https://crocs.fi.muni.cz @CRoCS_MUNI

Data Execution Prevention (DEP)

• Motto: When boundary between code and data blurs (buffer

overflow, SQL injection…) then exploitation might be possible

•

| PV286 - Secure coding93

!

https://crocs.fi.muni.cz @CRoCS_MUNI

Data Execution Prevention (DEP)

• Motto: When boundary between code and data blurs (buffer

overflow, SQL injection…) then exploitation might be possible

• Data Execution Prevention (DEP)

– prevents application to execute code from non-executable memory region

– available in modern operating systems

• Linux > 2.6.8, WinXPSP2, Mac OSX, iOS, Android…

– difference between ‘hardware’ and ‘software’ based DEP

| PV286 - Secure coding93

!

https://crocs.fi.muni.cz @CRoCS_MUNI

Hardware DEP

• Supported from AMD64 and Intel Pentium 4

– OS must add support of this feature (around 2004)

• CPU marks memory page as non-executable

– most significant bit (63th) in page table entry (NX bit)

– 0 == execute, 1 == data-only (non-executable)

•

•

| PV286 - Secure coding94

https://crocs.fi.muni.cz @CRoCS_MUNI

Hardware DEP

• Supported from AMD64 and Intel Pentium 4

– OS must add support of this feature (around 2004)

• CPU marks memory page as non-executable

– most significant bit (63th) in page table entry (NX bit)

– 0 == execute, 1 == data-only (non-executable)

• Protection typically against buffer overflows

• Cannot protect against all attacks!

– e.g., code compiled at runtime (produced by JIT compiler) must have both instructions and

data in executable page

– attacker redirect execution to generated code (JIT spray)

– used to bypass Adobe PDF and Flash security features

| PV286 - Secure coding94

https://crocs.fi.muni.cz @CRoCS_MUNI

Software “DEP”

• Unrelated to NX bit (no CPU support required)

• When exception is raised, OS checks if exception handling routine

pointer is in executable area

– Microsoft’s Safe Structured Exception Handling

• Software DEP is not preventing general execution in non-executable

pages

– different form of protection than hardware DEP

| PV286 - Secure coding95

https://crocs.fi.muni.cz @CRoCS_MUNI

Address Space Layout Randomization (ASLR)

• Random reposition of executable base, stack, heap and libraries address in

process’s address space

– aim is to prevent exploit to reliably jump to required address

•

•

•

| PV286 - Secure coding96

!

https://crocs.fi.muni.cz @CRoCS_MUNI

Address Space Layout Randomization (ASLR)

• Random reposition of executable base, stack, heap and libraries address in

process’s address space

– aim is to prevent exploit to reliably jump to required address

• Performed every time a process is loaded into memory

– random offset added to otherwise fixed address

– applies to program and also dynamic libraries

•

•

| PV286 - Secure coding96

!

https://crocs.fi.muni.cz @CRoCS_MUNI

Address Space Layout Randomization (ASLR)

• Random reposition of executable base, stack, heap and libraries address in

process’s address space

– aim is to prevent exploit to reliably jump to required address

• Performed every time a process is loaded into memory

– random offset added to otherwise fixed address

– applies to program and also dynamic libraries

– entropy of random offset is important (bruteforce)

•

•

| PV286 - Secure coding96

!

https://crocs.fi.muni.cz @CRoCS_MUNI

Address Space Layout Randomization (ASLR)

• Random reposition of executable base, stack, heap and libraries address in

process’s address space

– aim is to prevent exploit to reliably jump to required address

• Performed every time a process is loaded into memory

– random offset added to otherwise fixed address

– applies to program and also dynamic libraries

– entropy of random offset is important (bruteforce)

• Operating System kernel ASLR (kASLR)

– more problematic as long-running (random, but fixed until reboot)

•

| PV286 - Secure coding96

!

https://crocs.fi.muni.cz @CRoCS_MUNI

Address Space Layout Randomization (ASLR)

• Random reposition of executable base, stack, heap and libraries address in

process’s address space

– aim is to prevent exploit to reliably jump to required address

• Performed every time a process is loaded into memory

– random offset added to otherwise fixed address

– applies to program and also dynamic libraries

– entropy of random offset is important (bruteforce)

• Operating System kernel ASLR (kASLR)

– more problematic as long-running (random, but fixed until reboot)

• Introduced by Memco software (1997)

– fully implemented in Linux PaX patch (2001)

– MS Vista, enabled by default (2007), MS Win 8 more entropy (2012)

| PV286 - Secure coding96

!

https://crocs.fi.muni.cz @CRoCS_MUNI

ASLR – impact on attacks

• ASLR introduced big shift in attacker mentality

• Attacks are now based on gaps in ASLR

– legacy programs/libraries/functions without ASLR support

• ! /DYNAMICBASE

– address space spraying (heap/JIT)

– predictable memory regions, insufficient entropy

| PV286 - Secure coding101

https://crocs.fi.muni.cz @CRoCS_MUNI

ASLR – impact on attacks

• ASLR introduced big shift in attacker mentality

• Attacks are now based on gaps in ASLR

– legacy programs/libraries/functions without ASLR support

• ! /DYNAMICBASE

– address space spraying (heap/JIT)

– predictable memory regions, insufficient entropy

Can attacker execute desired

functionality without changing code?

| PV286 - Secure coding101

https://crocs.fi.muni.cz @CRoCS_MUNI

Return-oriented programming (ROP)

• Return-into-library technique (Solar Designer, 1997)

– method for bypassing DEP

– no write of attacker’s code to stack (as is prevented by DEP)

•

| PV286 - Secure coding102

!

https://crocs.fi.muni.cz @CRoCS_MUNI

Return-oriented programming (ROP)

• Return-into-library technique (Solar Designer, 1997)

– method for bypassing DEP

– no write of attacker’s code to stack (as is prevented by DEP)

1. function return address replaced by pointer to standard library function

•

| PV286 - Secure coding102

!

https://crocs.fi.muni.cz @CRoCS_MUNI

Return-oriented programming (ROP)

• Return-into-library technique (Solar Designer, 1997)

– method for bypassing DEP

– no write of attacker’s code to stack (as is prevented by DEP)

1. function return address replaced by pointer to standard library function

2. library function arguments replaced according to attackers needs

•

| PV286 - Secure coding102

!

https://crocs.fi.muni.cz @CRoCS_MUNI

Return-oriented programming (ROP)

• Return-into-library technique (Solar Designer, 1997)

– method for bypassing DEP

– no write of attacker’s code to stack (as is prevented by DEP)

1. function return address replaced by pointer to standard library function

2. library function arguments replaced according to attackers needs

3. function return results in execution of library function and given arguments

•

| PV286 - Secure coding102

!

https://crocs.fi.muni.cz @CRoCS_MUNI

Return-oriented programming (ROP)

• Return-into-library technique (Solar Designer, 1997)

– method for bypassing DEP

– no write of attacker’s code to stack (as is prevented by DEP)

1. function return address replaced by pointer to standard library function

2. library function arguments replaced according to attackers needs

3. function return results in execution of library function and given arguments

– Example: system call wrappers like system()

•

| PV286 - Secure coding102

!

https://crocs.fi.muni.cz @CRoCS_MUNI

Return-oriented programming (ROP)

• Return-into-library technique (Solar Designer, 1997)

– method for bypassing DEP

– no write of attacker’s code to stack (as is prevented by DEP)

1. function return address replaced by pointer to standard library function

2. library function arguments replaced according to attackers needs

3. function return results in execution of library function and given arguments

– Example: system call wrappers like system()

• Borrowed code chunks

| PV286 - Secure coding102

!

https://crocs.fi.muni.cz @CRoCS_MUNI

Return-oriented programming (ROP)

• Return-into-library technique (Solar Designer, 1997)

– method for bypassing DEP

– no write of attacker’s code to stack (as is prevented by DEP)

1. function return address replaced by pointer to standard library function

2. library function arguments replaced according to attackers needs

3. function return results in execution of library function and given arguments

– Example: system call wrappers like system()

• Borrowed code chunks

– Problem: 64-bit hardware introduced different calling convention

| PV286 - Secure coding102

!

https://crocs.fi.muni.cz @CRoCS_MUNI

Return-oriented programming (ROP)

• Return-into-library technique (Solar Designer, 1997)

– method for bypassing DEP

– no write of attacker’s code to stack (as is prevented by DEP)

1. function return address replaced by pointer to standard library function

2. library function arguments replaced according to attackers needs

3. function return results in execution of library function and given arguments

– Example: system call wrappers like system()

• Borrowed code chunks

– Problem: 64-bit hardware introduced different calling convention

• first arguments to function passed in CPU registers instead of via stack

| PV286 - Secure coding102

!

https://crocs.fi.muni.cz @CRoCS_MUNI

Return-oriented programming (ROP)

• Return-into-library technique (Solar Designer, 1997)

– method for bypassing DEP

– no write of attacker’s code to stack (as is prevented by DEP)

1. function return address replaced by pointer to standard library function

2. library function arguments replaced according to attackers needs

3. function return results in execution of library function and given arguments

– Example: system call wrappers like system()

• Borrowed code chunks

– Problem: 64-bit hardware introduced different calling convention

• first arguments to function passed in CPU registers instead of via stack

– attacker tries to find instruction sequences from any function that pop values

from the stack into registers (automated search by ROPgadget)

| PV286 - Secure coding102

!

https://crocs.fi.muni.cz @CRoCS_MUNI

Return-oriented programming (ROP)

• Return-into-library technique (Solar Designer, 1997)

– method for bypassing DEP

– no write of attacker’s code to stack (as is prevented by DEP)

1. function return address replaced by pointer to standard library function

2. library function arguments replaced according to attackers needs

3. function return results in execution of library function and given arguments

– Example: system call wrappers like system()

• Borrowed code chunks

– Problem: 64-bit hardware introduced different calling convention

• first arguments to function passed in CPU registers instead of via stack

– attacker tries to find instruction sequences from any function that pop values

from the stack into registers (automated search by ROPgadget)

– necessary arguments are inserted into registers

| PV286 - Secure coding102

!

https://crocs.fi.muni.cz @CRoCS_MUNI

Return-oriented programming (ROP)

• Return-into-library technique (Solar Designer, 1997)

– method for bypassing DEP

– no write of attacker’s code to stack (as is prevented by DEP)

1. function return address replaced by pointer to standard library function

2. library function arguments replaced according to attackers needs

3. function return results in execution of library function and given arguments

– Example: system call wrappers like system()

• Borrowed code chunks

– Problem: 64-bit hardware introduced different calling convention

• first arguments to function passed in CPU registers instead of via stack

– attacker tries to find instruction sequences from any function that pop values

from the stack into registers (automated search by ROPgadget)

– necessary arguments are inserted into registers

– return-into-library attack is then executed as before

| PV286 - Secure coding102

!

https://crocs.fi.muni.cz @CRoCS_MUNI

Control flow integrity

• Promising technique with low overhead

• Classic CFI (2005), Modular CFI (2014)

– avg 5% impact, 12% in worst case

– part of LLVM C compiler (CFI usable for other languages as well)

1.

2.

3.

4.

https://www.usenix.org/system/files/conference/usenixsecurity15/sec15-paper-carlini.pdf

| PV286 - Secure coding103

!

https://www.usenix.org/system/files/conference/usenixsecurity15/sec15-paper-carlini.pdf

https://crocs.fi.muni.cz @CRoCS_MUNI

Control flow integrity

• Promising technique with low overhead

• Classic CFI (2005), Modular CFI (2014)

– avg 5% impact, 12% in worst case

– part of LLVM C compiler (CFI usable for other languages as well)

1.

2.

3.

4.

https://www.usenix.org/system/files/conference/usenixsecurity15/sec15-paper-carlini.pdf

| PV286 - Secure coding103

!

https://www.usenix.org/system/files/conference/usenixsecurity15/sec15-paper-carlini.pdf

https://crocs.fi.muni.cz @CRoCS_MUNI

Control flow integrity

• Promising technique with low overhead

• Classic CFI (2005), Modular CFI (2014)

– avg 5% impact, 12% in worst case

– part of LLVM C compiler (CFI usable for other languages as well)

1. Analysis of source code to establish control-flow graph (which function can

call what other functions)

2.

3.

4.

https://www.usenix.org/system/files/conference/usenixsecurity15/sec15-paper-carlini.pdf

| PV286 - Secure coding103

!

https://www.usenix.org/system/files/conference/usenixsecurity15/sec15-paper-carlini.pdf

https://crocs.fi.muni.cz @CRoCS_MUNI

Control flow integrity

• Promising technique with low overhead

• Classic CFI (2005), Modular CFI (2014)

– avg 5% impact, 12% in worst case

– part of LLVM C compiler (CFI usable for other languages as well)

1. Analysis of source code to establish control-flow graph (which function can

call what other functions)

2. Assign shared labels between valid caller X and callee Y

3.

4.

https://www.usenix.org/system/files/conference/usenixsecurity15/sec15-paper-carlini.pdf

| PV286 - Secure coding103

!

https://www.usenix.org/system/files/conference/usenixsecurity15/sec15-paper-carlini.pdf

https://crocs.fi.muni.cz @CRoCS_MUNI

Control flow integrity

• Promising technique with low overhead

• Classic CFI (2005), Modular CFI (2014)

– avg 5% impact, 12% in worst case

– part of LLVM C compiler (CFI usable for other languages as well)

1. Analysis of source code to establish control-flow graph (which function can

call what other functions)

2. Assign shared labels between valid caller X and callee Y

3. When returning into function X, shared label is checked

4.

https://www.usenix.org/system/files/conference/usenixsecurity15/sec15-paper-carlini.pdf

| PV286 - Secure coding103

!

https://www.usenix.org/system/files/conference/usenixsecurity15/sec15-paper-carlini.pdf

https://crocs.fi.muni.cz @CRoCS_MUNI

Control flow integrity

• Promising technique with low overhead

• Classic CFI (2005), Modular CFI (2014)

– avg 5% impact, 12% in worst case

– part of LLVM C compiler (CFI usable for other languages as well)

1. Analysis of source code to establish control-flow graph (which function can

call what other functions)

2. Assign shared labels between valid caller X and callee Y

3. When returning into function X, shared label is checked

4. Return to other function is not permitted
https://www.usenix.org/system/files/conference/usenixsecurity15/sec15-paper-carlini.pdf

| PV286 - Secure coding103

!

https://www.usenix.org/system/files/conference/usenixsecurity15/sec15-paper-carlini.pdf

https://crocs.fi.muni.cz @CRoCS_MUNI

DEP and ASLR should be combined

• “For ASLR to be effective, DEP/NX must be enabled by default too.”

M. Howard, Microsoft

•

•

| PV286 - Secure coding104

!

https://crocs.fi.muni.cz @CRoCS_MUNI

DEP and ASLR should be combined

• “For ASLR to be effective, DEP/NX must be enabled by default too.”

M. Howard, Microsoft

• /GS combined with /DYNAMICBASE and /NXCOMPAT

– /NXCOMPAT (==DEP)

– prevents insertion of new attacker's code and forces ROP

– /DYNAMICBASE (==ASLR) randomizes code chunks utilized by ROP

– /GS prevents modification of return pointer used later for ROP

– /DYNAMICBASE randomizes position of master cookie for /GS

• Visual Studio → Configuration properties →

– Linker → All options

– C/C++ → All options

| PV286 - Secure coding104

!

https://crocs.fi.muni.cz @CRoCS_MUNI

SUMMARY

| PV286 - Secure coding105

https://crocs.fi.muni.cz @CRoCS_MUNI

Mandatory reading

• SANS: 2017 State of Application Security

– https://web.archive.org/web/20180119191652/https://www.sans.org/reading-

room/whitepapers/application/2017-state-application-security-balancing-speed-risk-

38100

– Which applications are of main security concern?

– What is expected time to deploy patch for critical security vulnerability?

– How does your organization test applications for vulnerabilities?

– Which language is the most common source of security risk?

| PV286 - Secure coding106

https://web.archive.org/web/20180119191652/https:/www.sans.org/reading-room/whitepapers/application/2017-state-application-security-balancing-speed-risk-38100
https://web.archive.org/web/20180119191652/https:/www.sans.org/reading-room/whitepapers/application/2017-state-application-security-balancing-speed-risk-38100
https://web.archive.org/web/20180119191652/https:/www.sans.org/reading-room/whitepapers/application/2017-state-application-security-balancing-speed-risk-38100

https://crocs.fi.muni.cz @CRoCS_MUNI

Optional reading

• Marcel Böhme: “Guarantees in Software Security”
– An article from Ferbuary 2024: https://arxiv.org/abs/2402.01944

– Interesting read with many practical example. However, it is academic and might be not

detailed enough (e.g., if you never heard about particular bug then it is hard to follow

since it is not explained in detail).

– “We review general approaches to reason about the security of a software system and

reflect upon the guarantees they provide. We introduce a taxonomy of fundamental

challenges towards the provision of guarantees, and discuss how these challenges are

routinely exploited to attack a system in spite of credible assurances about the absence

of such bugs. “

| PV286 - Secure coding107

https://arxiv.org/abs/2402.01944

https://crocs.fi.muni.cz @CRoCS_MUNI

Questions

| PV286 - Secure coding108

	Slide 1: PV286 - Secure coding principles and practices
	Slide 2: This Lecture
	Slide 3: This Lecture
	Slide 4: This Lecture
	Slide 5: This Lecture
	Slide 6: This Lecture
	Slide 7: This Lecture
	Slide 8: This Lecture
	Slide 9: Course trivia: PV286+PA193_00_Course_organisation_2024
	Slide 10
	Slide 11
	Slide 12: What is the cost of insecure software
	Slide 13: What is the cost of insecure software
	Slide 14: What is the cost of insecure software
	Slide 15: What is the cost of insecure software
	Slide 16: What is the cost of insecure software
	Slide 17: What is the cost of insecure software
	Slide 18: What is the cost of insecure software
	Slide 19: There is HUGE market for (undisclosed) vulnerabilities
	Slide 20: There is HUGE market for (undisclosed) vulnerabilities
	Slide 21: There is HUGE market for (undisclosed) vulnerabilities
	Slide 22: There is HUGE market for (undisclosed) vulnerabilities
	Slide 23: What software security means?
	Slide 24: What software security means?
	Slide 25: What software security means?
	Slide 26: What software security means?
	Slide 27: What software security means?
	Slide 28: What software security means?
	Slide 29: Defensive programming
	Slide 30: Defensive programming
	Slide 31: Where to learn about bugs and resulting vulnerabilities?
	Slide 32: Attacker goals and related vulnerabilities
	Slide 33: Attacker goals and related vulnerabilities
	Slide 34: Attacker goals and related vulnerabilities
	Slide 35: Attacker goals and related vulnerabilities
	Slide 36: Attacker goals and related vulnerabilities
	Slide 37: Where to find relevant bug patterns and info
	Slide 38: Where to find relevant bug patterns and info
	Slide 39: Where to find relevant bug patterns and info
	Slide 40: Where to find relevant bug patterns and info
	Slide 41: Common Weakness Enumeration (CWE)
	Slide 42: Common Weakness Enumeration (CWE)
	Slide 43: Common Weakness Enumeration (CWE)
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54: Frequent bugs – worth of prioritization (CWE/CVE)
	Slide 55: Frequent bugs – worth of prioritization (CWE/CVE)
	Slide 56: Frequent bugs – worth of prioritization (CWE/CVE)
	Slide 57: Frequent bugs – worth of prioritization (CWE/CVE)
	Slide 58: Frequent bugs – worth of prioritization (CWE/CVE)
	Slide 59: Frequent bugs – worth of prioritization (CWE/CVE)
	Slide 60: Frequent bugs – worth of prioritization (web)
	Slide 61: Frequent bugs – worth of prioritization (web)
	Slide 62: Frequent bugs – worth of prioritization (web)
	Slide 63: Example: Injection (1. OWASP TOP 10, 3. CWE Top 25)
	Slide 64: Example: Injection (1. OWASP TOP 10, 3. CWE Top 25)
	Slide 65: Example: Injection (1. OWASP TOP 10, 3. CWE Top 25)
	Slide 66: Example: Injection (1. OWASP TOP 10, 3. CWE Top 25)
	Slide 67: Example: Injection (1. OWASP TOP 10, 3. CWE Top 25)
	Slide 68: Example: Injection (1. OWASP TOP 10, 3. CWE Top 25)
	Slide 69: Example: Injection (1. OWASP TOP 10, 3. CWE Top 25)
	Slide 70: CWE flaw types by language
	Slide 71: Bugs patterns searched by tools
	Slide 72: Bugs patterns searched by tools
	Slide 73: Bugs patterns searched by tools
	Slide 74: Bugs patterns searched by tools
	Slide 75: Digging deeper and learning more…
	Slide 76: Digging deeper and learning more…
	Slide 77: Digging deeper and learning more…
	Slide 78: Digging deeper and learning more…
	Slide 79: Digging deeper and learning more…
	Slide 80: Vulnerability disclosure basics
	Slide 81: Vulnerability disclosure basics
	Slide 82: Vulnerability disclosure basics
	Slide 83: Vulnerability disclosure basics
	Slide 84: Vulnerability disclosure basics
	Slide 85: Vulnerability disclosure basics
	Slide 86: Vulnerability disclosure basics
	Slide 87: Vulnerability disclosure basics
	Slide 88: How to prevent, detect and mitigate code bugs?
	Slide 89: How to prevent, detect and mitigate code bugs?
	Slide 90: How to prevent, detect and mitigate code bugs?
	Slide 91: How to prevent, detect and mitigate code bugs?
	Slide 92: How to prevent, detect and mitigate code bugs?
	Slide 93: Microsoft’s Secure Development Lifecycle (SDL)
	Slide 94: Microsoft’s Secure Development Lifecycle (SDL)
	Slide 95: Microsoft’s Secure Development Lifecycle (SDL)
	Slide 96: Microsoft’s Secure Development Lifecycle (SDL)
	Slide 97: Microsoft’s Secure Development Lifecycle (SDL)
	Slide 98: Microsoft’s Secure Development Lifecycle (SDL)
	Slide 99: Microsoft’s Secure Development Lifecycle (SDL)
	Slide 100: Microsoft’s Secure Development Lifecycle (SDL)
	Slide 101: Use secure-by default languages and libraries
	Slide 102: Use secure-by default languages and libraries
	Slide 103: Use secure-by default languages and libraries
	Slide 104: Use secure-by default languages and libraries
	Slide 105: Use secure-by default languages and libraries
	Slide 106: Use of more secure versions of functions
	Slide 107: Use of more secure versions of functions
	Slide 108: Use of more secure versions of functions
	Slide 109: Use of more secure versions of functions
	Slide 110: Utilize hardening by compiler and platform
	Slide 111: Utilize hardening by compiler and platform
	Slide 112: Utilize hardening by compiler and platform
	Slide 113: Utilize hardening by compiler and platform
	Slide 114: Utilize hardening by compiler and platform
	Slide 115: Utilize hardening by compiler and platform
	Slide 116: Automation and tooling
	Slide 117: Static vs. dynamic analysis
	Slide 118: Static vs. dynamic analysis
	Slide 119: Static vs. dynamic analysis
	Slide 120: Automated analysis tools limitations
	Slide 121: Automated analysis tools limitations
	Slide 122: Automated analysis tools limitations
	Slide 123: Automated analysis tools limitations
	Slide 124: Always design for testability
	Slide 125: Always design for testability
	Slide 126: Continuous Integration
	Slide 127: Tests, Continuous integration…
	Slide 128: Tests, Continuous integration…
	Slide 129: Tests, Continuous integration…
	Slide 130: Tests, Continuous integration…
	Slide 131: Tests, Continuous integration…
	Slide 132: Continuous Integration: GitHub&Travis CI example
	Slide 133: Continuous Integration: GitHub&Travis CI example
	Slide 134: Continuous Integration: GitHub&Travis CI example
	Slide 135: Continuous Integration: GitHub&Travis CI example
	Slide 136: Continuous Integration: GitHub&Travis CI example
	Slide 137: Continuous Integration: GitHub&Travis CI example
	Slide 138: Continuous Integration: GitHub&Travis CI example
	Slide 139: CI: adding code analysis (e.g., CppCheck, Coverity)
	Slide 140: CI: adding code analysis (e.g., CppCheck, Coverity)
	Slide 141: CI: adding code analysis (e.g., CppCheck, Coverity)
	Slide 142: CI: adding code analysis (e.g., CppCheck, Coverity)
	Slide 143: CI: adding code analysis (e.g., CppCheck, Coverity)
	Slide 144: Dependabot (GitHub)
	Slide 145: Dependabot (GitHub)
	Slide 146: Dependabot (GitHub)
	Slide 147: Typical problems from real world
	Slide 148: Typical issues – where theory meets practice
	Slide 149: Typical issues – where theory meets practice
	Slide 150: Typical issues – where theory meets practice
	Slide 151: Typical issues – where theory meets practice
	Slide 152: Typical issues – where theory meets practice
	Slide 153: Typical issues – where theory meets practice
	Slide 154: Typical issues – where theory meets practice
	Slide 155: Typical issues – where theory meets practice
	Slide 156: Typical issues – where theory meets practice
	Slide 157: Typical issues – where theory meets practice
	Slide 158: Typical issues – where theory meets practice
	Slide 159
	Slide 160: Digging deeper…
	Slide 161: Digging deeper…
	Slide 162: Motivation problem
	Slide 163: Motivation problem
	Slide 164: Process memory layout
	Slide 165: Stack memory layout
	Slide 166: Stack overflow
	Slide 167: Stack overflow
	Slide 170: Type-overflow vulnerabilities - motivation
	Slide 171: Type-overflow vulnerabilities - motivation
	Slide 172: Type-overflow vulnerabilities - motivation
	Slide 173: Type overflow – basic problem
	Slide 174: Type overflow – basic problem
	Slide 175: Type overflow – basic problem
	Slide 176: Type overflow – basic problem
	Slide 177: Example: Make HUGE money with type overflow
	Slide 178: Make HUGE money with type overflow
	Slide 179: Make HUGE money with type overflow
	Slide 180: Make HUGE money with type overflow
	Slide 181: Make HUGE money with type overflow
	Slide 182: Make HUGE money with type overflow
	Slide 183: Make HUGE money with type overflow
	Slide 184: Make HUGE money with type overflow
	Slide 185: Make HUGE money with type overflow
	Slide 187: Bug dissection
	Slide 188: Bug dissection
	Slide 189: Bug dissection
	Slide 190: Bug dissection
	Slide 191: Bug dissection
	Slide 192: Bug dissection
	Slide 193: Type overflow – Bitcoin
	Slide 195: BugFix – proper checking for overflow
	Slide 196: Questions
	Slide 199: Source code protections Compiler protections Platform protections
	Slide 200: Safe add and mult operations in C/C++
	Slide 201: Safe add and mult operations in C/C++
	Slide 202: Safe add and mult operations in C/C++
	Slide 203: Safe add and mult operations in Java
	Slide 204: Safe add and mult operations in Java
	Slide 205: Format string vulnerabilities - motivation
	Slide 206: Format string vulnerabilities
	Slide 207: Format string vulnerabilities
	Slide 208: Information disclosure vulnerabilities
	Slide 209: Information disclosure vulnerabilities
	Slide 210: Format string vulnerability - example
	Slide 211: Format string vulnerability - example
	Slide 212: Format string vulnerability - example
	Slide 213: Non-terminating functions - example
	Slide 214: strncpy - manual
	Slide 215: strncpy - manual
	Slide 216: Non-terminating functions for strings
	Slide 217: Non-terminating functions for strings
	Slide 218: Non-terminating functions for strings
	Slide 219: Heap overflow
	Slide 220: Heap overflow
	Slide 221: Heap overflow
	Slide 222: Heap overflow
	Slide 225: Secure C library – selected functions
	Slide 226: Secure C library – selected functions
	Slide 227: Secure C library – selected functions
	Slide 229: Secure C library
	Slide 230: Source code protections Compiler protections Platform protections
	Slide 234
	Slide 235
	Slide 236
	Slide 237
	Slide 238: MSVC Compiler security flags - /GS
	Slide 239: MSVC Compiler security flags - /GS
	Slide 240: MSVC Compiler security flags - /GS
	Slide 241: MSVC Compiler security flags - /GS
	Slide 255: /GS – what is NOT protected
	Slide 256: /GS – what is NOT protected
	Slide 258: GCC compiler - StackGuard & ProPolice
	Slide 259: GCC compiler - StackGuard & ProPolice
	Slide 263
	Slide 264
	Slide 265
	Slide 266: GCC -fstack-protector-all
	Slide 267: GCC -fstack-protector-all
	Slide 268: GCC -fstack-protector-all
	Slide 269: GCC -fstack-protector-all
	Slide 270: GCC -fstack-protector-all
	Slide 272: How to bypass stack protection cookie?
	Slide 273: How to bypass stack protection cookie?
	Slide 274: How to bypass stack protection cookie?
	Slide 275: How to bypass stack protection cookie?
	Slide 276: How to bypass stack protection cookie?
	Slide 277: Source code protections Compiler protections Platform protections
	Slide 278: Data Execution Prevention (DEP)
	Slide 279: Data Execution Prevention (DEP)
	Slide 280: Hardware DEP
	Slide 281: Hardware DEP
	Slide 282: Software “DEP”
	Slide 283: Address Space Layout Randomization (ASLR)
	Slide 284: Address Space Layout Randomization (ASLR)
	Slide 285: Address Space Layout Randomization (ASLR)
	Slide 286: Address Space Layout Randomization (ASLR)
	Slide 287: Address Space Layout Randomization (ASLR)
	Slide 297: ASLR – impact on attacks
	Slide 298: ASLR – impact on attacks
	Slide 299: Return-oriented programming (ROP)
	Slide 300: Return-oriented programming (ROP)
	Slide 301: Return-oriented programming (ROP)
	Slide 302: Return-oriented programming (ROP)
	Slide 303: Return-oriented programming (ROP)
	Slide 304: Return-oriented programming (ROP)
	Slide 305: Return-oriented programming (ROP)
	Slide 306: Return-oriented programming (ROP)
	Slide 307: Return-oriented programming (ROP)
	Slide 308: Return-oriented programming (ROP)
	Slide 309: Return-oriented programming (ROP)
	Slide 310: Control flow integrity
	Slide 311: Control flow integrity
	Slide 312: Control flow integrity
	Slide 313: Control flow integrity
	Slide 314: Control flow integrity
	Slide 315: Control flow integrity
	Slide 316: DEP and ASLR should be combined
	Slide 317: DEP and ASLR should be combined
	Slide 318: Summary
	Slide 319: Mandatory reading
	Slide 320: Optional reading
	Slide 321

