
https://crocs.fi.muni.cz @CRoCS_MUNI

Łukasz Chmielewski chmiel@fi.muni.cz (based on the lecture by P. Svenda)

(email me with your questions/feedback)

Centre for Research on Cryptography and Security, Masaryk University

PV286 - Secure coding principles and

practices

Static analysis of source code

mailto:chmiel@fi.muni.cz

https://crocs.fi.muni.cz @CRoCS_MUNI

This Lecture

• Today we cover static analysis of source code

• Some hard topics were covered too fast last time, so I will finish the lecture.

• Split version (wrt. animations) of the lecture one is also uploaded.

• Resources:

– Recording should be available around Wednesday (but we will see).

– An old version of the lecture (slightly shorter but well-recorded, from 2021):

• https://is.muni.cz/auth/el/fi/jaro2022/PA193/um/video/PA193_03_StaticChecking_2022.video5

– Last year (worse quality):

• https://is.muni.cz/auth/el/fi/jaro2023/PV286/um/vi/136775435/

– Materials:

• https://is.muni.cz/auth/el/fi/jaro2024/PV286/um/

2 | PV286 - Static analysis of software

https://is.muni.cz/auth/el/fi/jaro2022/PA193/um/video/PA193_03_StaticChecking_2022.video5
https://is.muni.cz/auth/el/fi/jaro2023/PV286/um/vi/136775435/
https://is.muni.cz/auth/el/fi/jaro2024/PV286/um/

https://crocs.fi.muni.cz @CRoCS_MUNI

PROBLEM

Static analysis of source code

3 | PV286 - Static analysis of software

https://crocs.fi.muni.cz @CRoCS_MUNI

What is wrong with this code?

4 | PV286 - Static analysis of software

network_receive(uchar* in_packet, short &in_packet_len); // TLV

uchar* in = in_packet + 3;

short length = make_short(in_packet + 1);

uchar* out_packet = malloc(1 + 2 + length);

uchar* out = out_packet + 3;

memcpy(out, in, length);

network_transmit(out_packet);

https://crocs.fi.muni.cz @CRoCS_MUNI

network_receive(uchar* in_packet, short &in_packet_len); // TLV

uchar* in = in_packet + 3; short length = make_short(inpacket + 1);

uchar* out_packet = malloc(1 + 2 + length);

uchar* out = out_packet + 3;

memcpy(out, in, length);

network_transmit(out_packet);

OpenSSL Heartbleed – “packet repeater”

| PV286 - Static analysis of software

Payload [length B]length [2B]Type [1B]

unsigned char* in

Payload (length B)length [2B]Type [1B]

unsigned char* out

Payload [length B]

5

https://crocs.fi.muni.cz @CRoCS_MUNI

network_receive(uchar* in_packet, short &in_packet_len); // TLV

uchar* in = in_packet + 3;

uchar* out_packet = malloc(1 + 2 + length);

uchar* out = out_packet + 3;

memcpy(out, in, length);

network_transmit(out_packet);

Problem?

| PV286 - Static analysis of software

Payload [1B]Type [1B]

unsigned char* in

Payload (65535B)0xFFFF [2B]Type [1B]

unsigned char* out

… Heap memory …

Payload [1B] Heap memory (keys, passwords…)

0x0001 [2B]0xFFFF [2B]

Problem! https://heartbleed.com

in_packet_len != length + 3

6

https://crocs.fi.muni.cz @CRoCS_MUNI

How serious the bug was?

• \

• http://news.netcraft.com/archives/2014/04/08/half-a-million-widely-

trusted-websites-vulnerable-to-heartbleed-bug.html

| PV286 - Static analysis of software

17% SSL web servers (OpenSSL 1.0.1)

Twitter, GitHub, Yahoo, Tumblr, Steam, DropBox, DuckDuckGo…

https://seznam.cz, https://fi.muni.cz …

7

http://news.netcraft.com/archives/2014/04/08/half-a-million-widely-trusted-websites-vulnerable-to-heartbleed-bug.html
http://news.netcraft.com/archives/2014/04/08/half-a-million-widely-trusted-websites-vulnerable-to-heartbleed-bug.html
http://news.netcraft.com/archives/2014/04/08/half-a-million-widely-trusted-websites-vulnerable-to-heartbleed-bug.html
http://toolbar.netcraft.com/site_report?url=https://twitter.com
http://toolbar.netcraft.com/site_report?url=https://github.com
http://toolbar.netcraft.com/site_report?url=https://uk.yahoo.com
http://toolbar.netcraft.com/site_report?url=https://www.tumblr.com
http://toolbar.netcraft.com/site_report?url=https://store.steampowered.com
http://toolbar.netcraft.com/site_report?url=https://dropbox.com
http://toolbar.netcraft.com/site_report?url=https://duckduckgo.com
https://seznam.cz/
https://fi.muni.cz/

https://crocs.fi.muni.cz @CRoCS_MUNI

Defensive programming

• Term coined by Kernighan and Plauger, 1981

– “writing the program so it can cope with small disasters”

– talked about in introductory programming courses

• Practice of coding with the mind-set that errors are inevitable, and

something will always go wrong

– prepare program for unexpected behavior

– prepare program for easier bug diagnostics

• Defensive programming targets mainly unintentional errors (not

intentional attacks)

– But increasingly given security connotation

8 | PV286 - Static analysis of software

https://crocs.fi.muni.cz @CRoCS_MUNI

“Security features != Secure features”

• “Security features != Secure features”

– Howard and LeBlanc, 2002

• “Writing security features, although important, is only 10% of the

workload of creating secure code. The other 90% of the coding

work is meant to ensure that all non-security codebase is secure.”

– Sullivan, Balinsky, 2012

• “Reliable software does what it is supposed to do. Secure

software does what it is supposed to do, and nothing else.”

– Ivan Arce

9 | PV286 - Static analysis of software

https://crocs.fi.muni.cz @CRoCS_MUNI

STATIC AND DYNAMIC ANALYSIS

10 | PV286 - Static analysis of software

https://crocs.fi.muni.cz @CRoCS_MUNI

How to find bugs in code?

• Manual analysis of code

– code review, security code review

• Manual “dynamic” testing

– running program, observe expected output

• Automated analysis of code without execution

– static analysis (pattern matching, symbolic execution)

• Automated analysis of code with execution

– dynamic analysis (running code)

• Automated testing of inputs (fuzzing)

11 | PV286 - Static analysis of software

https://crocs.fi.muni.cz @CRoCS_MUNI

Approaches for automated code review

• Formal methods (mathematical verification)

– requires mathematical model and assertions

– often requires modeling the system as finite state machine

• verification of every state and transition

• (outside the scope of this course, consider IA169)

• Code metrics

– help to identify potential hotspots (complex code)

– e.g., Cyclomatic complexity (number of linearly indep. paths)

• Review and inspection

– tries to find suspicious patterns

– automated version of human code review
12 | PV286 - Static analysis of software

https://crocs.fi.muni.cz @CRoCS_MUNI

Microsoft’s Secure Development Lifecycle

13 | PV286 - Static analysis of software

Taken from

https://learn.microsoft.com/en-us/windows/security/threat-protection/msft-security-dev-lifecycle

https://learn.microsoft.com/en-us/windows/security/threat-protection/msft-security-dev-lifecycle

https://crocs.fi.muni.cz @CRoCS_MUNI

Seven Touchpoints for Software Security (by Cigital)

14 | PV286 - Static analysis of software

http://www.swsec.com/resources/touchpoints/

http://www.swsec.com/resources/touchpoints/

https://crocs.fi.muni.cz @CRoCS_MUNI

Static vs. dynamic analysis

• Static analysis

– examine program’s code without executing it

– can examine both source code and compiled code

• source code is easier to understand (more metadata)

– can be applied on unfinished code

– manual code audit is kind of static analysis

• Dynamic analysis

– code is executed (compiled or interpreted)

– input values are supplied, internal memory is examined…

15 | PV286 - Static analysis of software

https://crocs.fi.muni.cz @CRoCS_MUNI

Example of output produced by analyzer

16 | PV286 - Static analysis of software

https://crocs.fi.muni.cz @CRoCS_MUNI

Types of static analysis

• Type checking – performed by compiler

• Style checking – performed by automated tools

• Program formal verification

– annotations & verification of specified properties

• Bug finding / hunting

– between style checking and verification

– more advanced static analysis

– aim to infer real problem, not only pattern match

• Security Review

– previous possibilities with additional support for review

17 | PV286 - Static analysis of software

https://crocs.fi.muni.cz @CRoCS_MUNI

Type checking

• Type checking – performed by compiler

– errors against language rules prevents compilation

– warnings usually issued when problematic type manipulation occur

– false positives possible (short=int=short), but don’t ignore!

• Security problems due to wrong types

– string format vulnerabilities

– type overflow → buffer overflow

– data loss (bigger type to smaller type)

• More on type checking later with compiler warnings

19 | PV286 - Static analysis of software

https://crocs.fi.muni.cz @CRoCS_MUNI

Style checking

• Style checking – performed by automated tools

– set of required code rules

• Separate tools

– MS style checker

– Unix: lint tool (http://www.unix.com/man-page/FreeBSD/1/lint)

– Checkstyle

– PMD (http://pmd.sourceforge.net/)

– Google C++ style checker: C++lint

• https://github.com/darcyliu/google-styleguide/blob/master/cppguide.xml

• https://github.com/google/styleguide/blob/gh-pages/cpplint/cpplint.py

• Compiler warnings gcc –Wall gcc -Wextra

20 | PV286 - Static analysis of software

http://www.unix.com/man-page/FreeBSD/1/lint
http://pmd.sourceforge.net/
https://github.com/darcyliu/google-styleguide/blob/master/cppguide.xml
https://github.com/google/styleguide/blob/gh-pages/cpplint/cpplint.py

https://crocs.fi.muni.cz @CRoCS_MUNI

Program formal verification

• Prove particular program property

– e.g., all dynamically allocated memory is always freed

• Requires mathematical model and assertions

• Often requires modeling the system as finite state machine

– verification of every state and transition

• (Outside the scope of this course, consider IA169)

21 | PV286 - Static analysis of software

https://crocs.fi.muni.cz @CRoCS_MUNI

Bug finding

• No language errors != secure program

– finding bugs, even when language permits it

• Examples:

– Buffer overflow possible?

– User input formatted into system() call?

– Hard-coded secrets?

• Tool must keep false positives low

– do not report as a bug something which isn’t

– there is simply too many potential problems

• Tools: FindBugs, PREfast, Coverity...

22 | PV286 - Static analysis of software

https://crocs.fi.muni.cz @CRoCS_MUNI

Security analysis and review

• Usage of analysis tool to perform security review

– Usually multiple tools are used during the process

• Difference between compiler (e.g., gcc) and additional tool (e.g.,

cppcheck):

– Compiler must never report error that isn’t (lang. standard)

– Compiler must report low # of false warning (as heavily used by normal

“uneducated” developers)

– Tool executed for automatic reporting should have low # of false warnings

(otherwise untrusted)

– Tool executed during manual code review / pentest can have higher # of false

warnings (as filtered by expert)

23 | PV286 - Static analysis of software

https://crocs.fi.muni.cz @CRoCS_MUNI

BEFORE DIGGING TO CONCRETE

TOOLS…

24 | PV286 - Static analysis of software

https://crocs.fi.muni.cz @CRoCS_MUNI

Static analysis limitations

• Overall program architecture is not understood

– sensitivity of program path

– impact of errors on other parts

• Application semantics is not understood

– Is string returned to the user? Can string also contain passwords?

• Social context is not understood

– Who is using the system? High entropy keys encrypted under short guessable

password?

25 | PV286 - Static analysis of software

https://crocs.fi.muni.cz @CRoCS_MUNI

Problem of false positives/negatives

• False positives

– errors reported by a tool that are not real errors

– too conservative analysis

– inaccurate model used for analysis

– annoying, more code needs to be checked, less readable output, developers

tend to have as an excuse (for not fixing other problems reported by tool)

• False negatives

– real errors NOT reported by a tool

– missed problems, e.g., missing rules for detection

26 | PV286 - Static analysis of software

https://crocs.fi.muni.cz @CRoCS_MUNI

False positives – limits of static analysis

• When foo() is called, always writes outside buffer

• Should you fix it even when foo() is not called?

27 | PV286 - Static analysis of software

void foo()

{

char a[10];

a[20] = 0;

}

d:\StaticAnalysis>cppcheck example.cpp
Checking example.cpp...
[example.cpp:4]: (error) Array 'a[10]' accessed at index 20, which

is out of bounds.

https://crocs.fi.muni.cz @CRoCS_MUNI

False positives – limits of static analysis

• For x + y != 2 false positive

• But analyzer cannot be sure about x & y values

28 | PV286 - Static analysis of software

int x = 0;

int y = 3;

void foo()

{

char a[10];

if (x + y == 2) {

a[20] = 0;

}

}
d:\StaticAnalysis>cppcheck example.cpp
Checking example.cpp...
[example.cpp:7]: (error) Array 'a[10]' accessed at index 20, which

is out of bounds.

problematic assignment

put inside condition

https://crocs.fi.muni.cz @CRoCS_MUNI

False positives – limits of static analysis

• No problem detected – constants are evaluated in compile

time and condition is now completely removed

29 | PV286 - Static analysis of software

const int x = 0;

const int y = 3;

void foo()

{

char a[10];

if (x + y == 2) {

a[20] = 0;

}

}

const added (same as for #define)

d:\StaticAnalysis>cppcheck --debug example.cpp
Checking example.cpp...

##file example.cpp
1:

2:

3:

4: void foo ()
5: {
6: char a@3 [10] ;
7:

8:

9:

10: }

d:\StaticAnalysis>cppcheck example.cpp
Checking example.cpp...

https://crocs.fi.muni.cz @CRoCS_MUNI

False positives – limits of static analysis

• Whole program is not executed and evaluated

30 | PV286 - Static analysis of software

void foo2(int x, int y) {

char a[10];

if (x + y == 2) {

a[20] = 0;

}

}

int main() {

foo2(0, 3);

return 0;

}

d:\StaticAnalysis>cppcheck --debug example.cpp
Checking example.cpp...

##file example.cpp
1: void foo2 (int x@1 , int y@2) {
2: char a@3 [10] ;
3: if (x@1 + y@2 == 2) {
4: a@3 [20] = 0 ;
5: }
6: }
7: int main () {
8: foo2 (0 , 3) ;
9: return 0 ;
10:}

[example.cpp:4]: (error) Array 'a[10]' accessed at index 20,

which is out of bounds.

https://crocs.fi.muni.cz @CRoCS_MUNI

Always design for testability

• “Code that isn't tested doesn't work - this seems to be the safe

assumption.” Kent Beck

• Code written in a way that is easier to test

– proper decomposition, unit tests, mock objects

– source code annotations (with subsequent analysis)

• References

– https://en.wikipedia.org/wiki/Design_For_Test

– http://www.agiledata.org/essays/tdd.html

31 | PV286 - Static analysis of software

https://en.wikipedia.org/wiki/Design_For_Test
http://www.agiledata.org/essays/tdd.html

https://crocs.fi.muni.cz @CRoCS_MUNI

BUILD-IN COMPILER ANALYSIS

32 | PV286 - Static analysis of software

https://crocs.fi.muni.cz @CRoCS_MUNI

Example (MSVC flags)

• warning C4018: '>=' : signed/unsigned mismatch

33 | PV286 - Static analysis of software

#include <iostream>

using namespace std;

int main(void) {

int low_limit = 0;

for (unsigned int i = 10; i >= low_limit; i--) {

cout << ".";

}

return 0;

}

https://crocs.fi.muni.cz @CRoCS_MUNI

Warnings – how compiler signals potential troubles

• MSVC /W n

– /W 0 disables all warnings

– /W 1 & /W 2 basic warnings

– /W 3 recommended for production purposes for legacy code (default)

– /W 4 recommended for all new compilations

– /Wall == /W4 + extra

• GCC -Wall, -Wextra

• Treat warnings as errors

– GCC –Werror, MSVC /WX

– forces you to fix all warnings, but slightly obscure nature of problem

34 | PV286 - Static analysis of software

https://crocs.fi.muni.cz @CRoCS_MUNI

warning C4018: '>=' : signed/unsigned mismatch

• What will be the output of following code?

– string "x > y"

– but also compiler warning C4018

35 | PV286 - Static analysis of software

#include <iostream>

using namespace std;

int main(void) {

int x = -100;

unsigned int y = 100;

if (x > y) { cout << "x > y"; }

else { cout << "y >= x"; }

return 0;

}

int → unsigned int

-100 → 0xffffff9c

https://crocs.fi.muni.cz @CRoCS_MUNI

warning C4018: '>=' : signed/unsigned mismatch cont’d

But why? Rules:
• … The usual arithmetic conversions are rules that provide a mechanism to yield a common

type when both operands of a binary operator are balanced to a common type or the second

and third operands of the conditional operator (? :) are balanced to a common type.

• Conversions involve two operands of different types, and one or both operands may be

converted. Many operators that accept arithmetic operands perform conversions using the

usual arithmetic conversions. After integer promotions are performed on both operands, the

following rules are applied to the promoted operands:

1. If both operands have the same type, no further conversion is needed.

2. If both operands are of the same integer type (signed or unsigned), the operand with the type of lesser integer

conversion rank is converted to the type of the operand with greater rank.

3. If the operand that has unsigned integer type has rank greater than or equal to the rank of the type of the other

operand, the operand with signed integer type is converted to the type of the operand with unsigned integer type.

4. …

36 | PV286 - Static analysis of software

More here: https://wiki.sei.cmu.edu/confluence/display/c/INT02-

C.+Understand+integer+conversion+rules#:~:text=The%20usual%20arithmetic%20conversions%20are,balanced%20to%20a%20common%20type.

https://wiki.sei.cmu.edu/confluence/display/c/INT02-C.+Understand+integer+conversion+rules#:~:text=The%20usual%20arithmetic%20conversions%20are,balanced%20to%20a%20common%20type
https://wiki.sei.cmu.edu/confluence/display/c/INT02-C.+Understand+integer+conversion+rules#:~:text=The%20usual%20arithmetic%20conversions%20are,balanced%20to%20a%20common%20type

https://crocs.fi.muni.cz @CRoCS_MUNI

Recommendations for MSVC CL

• Compile with higher warnings /W4

• Control and fix especially integer-related warnings

– warning C4018: '>=' : signed/unsigned mismatch

• comparing signed and unsigned values, signed value must be converted to

unsigned

– Beware of also C4244, C4389!

• possible loss of data because of truncation or signed & unsigned variables operation

• If existing code is inspected, look for

– #pragma warning (disable, Cxxxx) where xxxx is above

– (developers may disable to suppress false warnings, missing all real ones)

• Use compiler /RTC flag
37 | PV286 - Static analysis of software

https://crocs.fi.muni.cz @CRoCS_MUNI

Recommendations for GCC

• GCC –Wconversion

– warn about potentially problematic conversions

– fixed → floating point, signed → unsigned, ...

• GCC –Wsign-compare

– signed → unsigned producing incorrect result

– warning: comparison between signed and unsigned integer expressions [-

Wsign-compare]

– http://stackoverflow.com/questions/16834588/wsign-compare-warning-in-g provides example of real

problem

• Runtime integer error checks using –ftrapv

– trap function called when signed overflow in addition, subs, mult. occur

– but significant performance penalty (continuous overflow checking)

38 | PV286 - Static analysis of software

http://stackoverflow.com/questions/16834588/wsign-compare-warning-in-g

https://crocs.fi.muni.cz @CRoCS_MUNI

Compatibility issues?

– This listing provides an example of a real problem.

– g++:

Something is wrong.

Additional check went fine.

– MSVC: Everything is fine.

– Why?

• unsigned long long (for g++) vs long long (for MSVC)

• Compatibility reasons for MSVC?

39 | PV286 - Static analysis of software

For more see http://stackoverflow.com/questions/16834588/wsign-

compare-warning-in-g

http://stackoverflow.com/questions/16834588/wsign-compare-warning-in-g
http://stackoverflow.com/questions/16834588/wsign-compare-warning-in-g

https://crocs.fi.muni.cz @CRoCS_MUNI

GCC -ftrapv

40 | PV286 - Static analysis of software

/* compile with gcc -ftrapv <filename> */

#include <signal.h>

#include <stdio.h>

#include <limits.h>

void signalHandler(int sig) {

printf("Type overflow detected\n");

}

int main() {

signal(SIGABRT, &signalHandler);

int largeInt = INT_MAX;

int normalInt = 42;

int overflowInt = largeInt + normalInt; /* should cause overflow */

/* if compiling with -ftrapv, we shouldn't get here */

return 0;

}
http://stackoverflow.com/questions/5005379/c-avoiding-overflows-when-working-with-big-numbers

Try this at hom
e!

http://stackoverflow.com/questions/5005379/c-avoiding-overflows-when-working-with-big-numbers

https://crocs.fi.muni.cz @CRoCS_MUNI

STATIC ANALYSIS TOOLS

41 | PV286 - Static analysis of software

https://crocs.fi.muni.cz @CRoCS_MUNI

Both free and commercial tools

• Commercial tools

– Coverity (now under Synopsys), Veracode (CA Technologies)

– Microsoft PREfast (included in Visual Studio)

– PC-Lint (Gimpel Software), Klocwork Insight (Perforce)

• Free tools

– CppCheck http://cppcheck.sourceforge.net/

– Clang static analyzer https://clang-analyzer.llvm.org/

– csmock (multiple static analyzers including clang, gcc, cppcheck, shellcheck, pylint, Bandit, Smatch,

Coverity)

– SpotBugs https://github.com/spotbugs/spotbugs (for Java programs, originally named FindBugs)

– PMD https://pmd.github.io/

– ShellCheck https://www.shellcheck.net/

– Flawfinder https://www.dwheeler.com/flawfinder/, Splint http://www.splint.org/

– Rough Auditing Tool for Security (RATS) http://code.google.com/p/rough-auditing-tool-for-security/

– ...
43 | PV286 - Static analysis of software

http://cppcheck.sourceforge.net/
https://clang-analyzer.llvm.org/
https://github.com/spotbugs/spotbugs
https://pmd.github.io/
https://www.shellcheck.net/
http://www.dwheeler.com/flawfinder/
http://www.splint.org/
http://code.google.com/p/rough-auditing-tool-for-security/

https://crocs.fi.muni.cz @CRoCS_MUNI

Cppcheck

• A tool for static C/C++ code analysis

– Open-source freeware, https://cppcheck.sourceforge.net/

– Online demo https://cppcheck.sourceforge.net/demo/

• Last version 2.13 (2023-12-23)

• Used to find bugs in open-source projects (Linux kernel...)

• Command line & GUI version

• Standalone version, plugin into IDEs, version control...

– Code::Blocks, Codelite, Eclipse, Jenkins...

– Tortoise SVN, Visual Studio …

• Cross platform (Windows, Linux)
– sudo apt-get install cppcheck

46 | PV286 - Static analysis of software

https://cppcheck.sourceforge.net/
https://cppcheck.sourceforge.net/demo/

https://crocs.fi.muni.cz @CRoCS_MUNI

Cppcheck – what is checked?

• Bound checking for array overruns

• Suspicious patterns for class

• Exceptions safety

• Memory leaks

• Obsolete functions

• sizeof() related problems

• String format problems...

• See full list: https://sourceforge.net/p/cppcheck/wiki/ListOfChecks/

47 | PV286 - Static analysis of software

https://sourceforge.net/p/cppcheck/wiki/ListOfChecks/

https://crocs.fi.muni.cz @CRoCS_MUNI

Cppcheck – categories of problems

• error – when bugs are found

• warning - suggestions about defensive programming to prevent bugs

• style - stylistic issues related to code cleanup (unused functions, redundant

code, constness...)

• performance - suggestions for making the code faster.

• portability - portability warnings. 64-bit portability. code might work different on

different compilers. etc.

• information - Informational messages about checking problems

48 | PV286 - Static analysis of software

https://crocs.fi.muni.cz @CRoCS_MUNI

Cppcheck

| PV286 - Static analysis of software 49

https://crocs.fi.muni.cz @CRoCS_MUNI

cppcheck.exe --rule="pass[word]*" file.cpp

• cppcheck.exe --rule="if \(p \) { free \(p \) ; }" file.cpp

– will match only pointer with name ‘p’

52 | PV286 - Static analysis of software

https://crocs.fi.muni.cz @CRoCS_MUNI

Cppcheck – complex custom rules

• Simple rules: regular expressions

• Based on execution of user-supplied C++ code

– possible more complex analysis

1. Use cppcheck.exe --debug file.cpp

– outputs simplified code including Cppcheck’s internal variable unique ID

2. Write C++ code fragment performing analysis

3. Recompile Cppcheck with new rule and execute

• Read more details

– http://sourceforge.net/projects/cppcheck/files/Articles/

– http://www.cs.kent.edu/~rothstei/fall_14/sec_notes/writing-rules-3.pdf

53 | PV286 - Static analysis of software

http://sourceforge.net/projects/cppcheck/files/Articles/
http://www.cs.kent.edu/~rothstei/fall_14/sec_notes/writing-rules-3.pdf

https://crocs.fi.muni.cz @CRoCS_MUNI

PREfast - Microsoft static analysis tool

56 | PV286 - Static analysis of software

https://crocs.fi.muni.cz @CRoCS_MUNI

PREfast – example bufferOverflow

58 | PV286 - Static analysis of software

https://crocs.fi.muni.cz @CRoCS_MUNI

PREfast – what can be detected

• Potential buffer overflows

• Memory leaks, uninitialized variables

• Excessive stack usage

• Resources – release of locks...

• Incorrect usage of selected functions

• List of all code analysis warnings http://msdn.microsoft.com/en-

us/library/a5b9aa09.aspx

59 | PV286 - Static analysis of software

http://msdn.microsoft.com/en-us/library/a5b9aa09.aspx
http://msdn.microsoft.com/en-us/library/a5b9aa09.aspx

https://crocs.fi.muni.cz @CRoCS_MUNI

PREfast settings

• http://msdn.microsoft.com/en-us/library/ms182025.aspx

| PV286 - Static analysis of software 60

http://msdn.microsoft.com/en-us/library/ms182025.aspx

https://crocs.fi.muni.cz @CRoCS_MUNI| PV286 - Static analysis of software

Flawfinder

• Last version 2.0.19 (2021-08-29)

• Download at http://www.dwheeler.com/flawfinder/

• Build by setup.py build

• Install by setup.py install

• /build/scripts***/flawfinder.py

• flawfinder.py --context --html source_dir

62

http://www.dwheeler.com/flawfinder/

https://crocs.fi.muni.cz @CRoCS_MUNI| PV286 - Static analysis of software

Flawfinder - example

63

https://crocs.fi.muni.cz @CRoCS_MUNI

Coverity (free for open-source)

• Commercial static & dynamic analyzer

• Free for C/C++ & Java open-source projects

• https://scan.coverity.com/

• Process

– Register at scan.coverity.com (GitHub account usage possible)

– Download Coverity build tool for your platform

• Quality and Security Advisor

– Build your project with cov-build

• cov-build --dir cov-int <build command>

– Zip and submit build for analysis (works on binary, not source)

• Can be integrated with Travis CI (continuous integration)

– https://scan.coverity.com/travis_ci
64 | PV286 - Static analysis of software

https://scan.coverity.com/
https://scan.coverity.com/travis_ci

https://crocs.fi.muni.cz @CRoCS_MUNI65 | PV286 - Static analysis of software

++

https://crocs.fi.muni.cz @CRoCS_MUNI

Code scanning with GitHub + Actions + Codacy

66 | PV286 - Static analysis of software

+ +

https://crocs.fi.muni.cz @CRoCS_MUNI

SpotBugs

• Static analysis of Java programs (continuation of FindBugs)

• Extended coverage for OWASP Top 10 and CWE

• Current version 4.8.3 (2023-12-1)

– https://github.com/spotbugs/spotbugs

– Command-line, GUI, plugins into variety of tools

– Support for custom rules

• FindSecurityBugs 1.12.0. (2022-04-06)

– Additional detection rules for SpotBugs

– https://h3xstream.github.io/find-sec-bugs/bugs.htm

67 | PV286 - Static analysis of software

https://github.com/spotbugs/spotbugs
https://h3xstream.github.io/find-sec-bugs/bugs.htm

https://crocs.fi.muni.cz @CRoCS_MUNI

PMD Source Code Analyzer

• https://pmd.github.io/

• Static analyser, mainly focused on Java, but other languages as well

• Current version 7.0.0-rc4 (30-September-2023)

• Additional features like copy-paste detector

69 | PV286 - Static analysis of software

https://pmd.github.io/

https://crocs.fi.muni.cz @CRoCS_MUNI

How to reason about available tooling

• Understand problems

– Previous ones, likely to repeat, patterns…, read bug dissection reports

• Understand principles of solution

– What tool is used to detect problem, how was tool configured…

• Find suitable tooling for your environment

– Language, operating system…

• Integrate, automate (CI)

– Run tests and analysis tools frequently and automatically

• Understand limitations (what is not detected)

70 | PV286 - Static analysis of software

https://crocs.fi.muni.cz @CRoCS_MUNI

How many false positives are too many?

• “Because its analysis is sometimes imprecise, FindBugs can report

false warnings, which are warnings that do not indicate real errors. In

practice, the rate of false warnings reported by FindBugs is less than

50%.”

FindBugs Fact Sheet

71 | PV286 - Static analysis of software

https://crocs.fi.muni.cz @CRoCS_MUNI

STATIC ANALYSIS IS NOT PANACEA

72 | PV286 - Static analysis of software

https://crocs.fi.muni.cz @CRoCS_MUNI73 | PV286 - Static analysis of software

// Note: GCC and MSVC uses different memory alignment

// Try "12345678DevilEvecosia" as a password for gcc build

// Try "1234567812345678Devil I am. Ha Ha" as a password for MSVC debug build

void demoBufferOverflowData() {

int unused_variable = 30;

#define NORMAL_USER 'n'

#define ADMIN_USER 'a'

int userRights = NORMAL_USER;

#define USER_INPUT_MAX_LENGTH 8

char userName[USER_INPUT_MAX_LENGTH];

char passwd[USER_INPUT_MAX_LENGTH];

// print some info about variables

printf("%-20s: %p\n", "userName", userName);

printf("%-20s: %p\n", "passwd", passwd);

printf("%-20s: %p\n", "unused_variable", &unused_variable);

printf("%-20s: %p\n", "userRights", &userRights);

printf("\n");

// Get user name

memset(userName, 1, USER_INPUT_MAX_LENGTH);

memset(passwd, 2, USER_INPUT_MAX_LENGTH);

printf("login as: ");

fflush(stdout);

gets(userName);

// Get password

printf("%s@vulnerable.machine.com: ", userName);

fflush(stdout);

gets(passwd);

// Check user rights (set to NORMAL_USER and not changed in code)

if (userRights == NORMAL_USER) {

printf("\nWelcome, normal user '%s', your rights are limited.\n\n", userName);

fflush(stdout);

}

if (userRights == ADMIN_USER) {

printf("\nWelcome, all mighty admin user '%s'!\n", userName);

fflush(stdout);

}

// How to FIX:

//memset(userName, 0, USER_INPUT_MAX_LENGTH);

//fgets(userName, USER_INPUT_MAX_LENGTH - 1, stdin);

//memset(passwd, 0, USER_INPUT_MAX_LENGTH);

//fgets(passwd, USER_INPUT_MAX_LENGTH - 1, stdin);

}

From
 1. lecture

Cppcheck --enable=all

d:\StaticAnalysis>cppcheck --enable=all bufferOverflow.cpp
Checking bufferOverflow.cpp...
[bufferOverflow.cpp:26]: (style) Obsolete function 'gets' called. It is recommended to use

the function 'fgets' instead.
[bufferOverflow.cpp:31]: (style) Obsolete function 'gets' called. It is recommended to use

the function 'fgets' instead.

MSVC /W4
1> BufferOverflow.cpp
1>bufferoverflow.cpp(32): warning C4996: 'gets': This function or variable may be unsafe.

Consider using gets_s instead. To disable deprecation, use _CRT_SECURE_NO_WARNINGS.
1> c:\program files (x86)\microsoft visual studio 11.0\vc\include\stdio.h(261) : see declaration of 'gets'
1>bufferoverflow.cpp(37): warning C4996: 'gets': This function or variable may be unsafe.

Consider using gets_s instead. To disable deprecation, use _CRT_SECURE_NO_WARNINGS.
1> c:\program files (x86)\microsoft visual studio 11.0\vc\include\stdio.h(261) : see declaration of 'gets'
1>bufferoverflow.cpp(78): warning C4996: 'strncpy': This function or variable may be unsafe.

Consider using strncpy_s instead. To disable deprecation, use _CRT_SECURE_NO_WARNINGS.
1> c:\program files (x86)\microsoft visual studio 11.0\vc\include\string.h(191) : see declaration of 'strncpy'
1>bufferoverflow.cpp(81): warning C4996: 'sprintf': This function or variable may be unsafe.

Consider using sprintf_s instead. To disable deprecation, use _CRT_SECURE_NO_WARNINGS.
1> c:\program files (x86)\microsoft visual studio 11.0\vc\include\stdio.h(357) : see declaration of 'sprintf'

MSVC /analyze (PREfast)
1> BufferOverflow.cpp
bufferoverflow.cpp(32): warning : C6386: Buffer overrun while writing to 'userName':

the writable size is '8' bytes, but '4294967295' bytes might be written.
bufferoverflow.cpp(37): warning : C6386: Buffer overrun while writing to 'passwd':

the writable size is '8' bytes, but '4294967295' bytes might be written.

https://crocs.fi.muni.cz @CRoCS_MUNI

Type overflow – example with dynalloc

74 | PV286 - Static analysis of software

typedef struct _some_structure {

float someData[1000];

} some_structure;

void demoDataTypeOverflow(int totalItemsCount, some_structure* pItem,

int itemPosition) {

// See http://blogs.msdn.com/oldnewthing/archive/2004/01/29/64389.aspx

some_structure* data_copy = NULL;

int bytesToAllocation = totalItemsCount * sizeof(some_structure);

printf("Bytes to allocation: %d\n", bytesToAllocation);

data_copy = (some_structure*) malloc(bytesToAllocation);

if (itemPosition >= 0 && itemPosition < totalItemsCount) {

memcpy(&(data_copy[itemPosition]), pItem, sizeof(some_structure));

}

else {

printf("Out of bound assignment");

return;

}

free(data_copy);

}

From
 1. lecture

Cppcheck --enable=all

d:\StaticAnalysis>cppcheck --enable=all typeOverflow.cpp
Checking typeOverflow.cpp...
[typeOverflow.cpp:17]: (error) Memory leak: data_copy

MSVC /W4

1> typeOverflow.cpp nothing ☺

MSVC /analyze (PREfast)

1> typeOverflow.cpp

bufferoverflow.cpp(13): warning : C6011:

Dereferencing NULL pointer 'data_copy'.

https://crocs.fi.muni.cz @CRoCS_MUNI

What potential bug was not found?

75 | PV286 - Static analysis of software

typedef struct _some_structure {

float someData[1000];

} some_structure;

void demoDataTypeOverflow(int totalItemsCount, some_structure* pItem,

int itemPosition) {

// See http://blogs.msdn.com/oldnewthing/archive/2004/01/29/64389.aspx

some_structure* data_copy = NULL;

int bytesToAllocation = totalItemsCount * sizeof(some_structure);

printf("Bytes to allocation: %d\n", bytesToAllocation);

data_copy = (some_structure*) malloc(bytesToAllocation);

if (itemPosition >= 0 && itemPosition < totalItemsCount) {

memcpy(&(data_copy[itemPosition]), pItem, sizeof(some_structure));

}

else {

printf("Out of bound assignment");

return;

}

free(data_copy);

}

From
 1. lecture

https://crocs.fi.muni.cz @CRoCS_MUNI

Test suites – vulnerable code, benchmark

• SAMATE Juliet Test Suite

– huge test suite which contains at least 45000 C/C++ test cases

– http://samate.nist.gov/SRD/testsuite.php

• Static analysis test suite for C programs

– https://ieeexplore.ieee.org/document/6032220

• Suitable for testing new methods, but NOT for comparison of

existing commercial products

– Public suites, products already optimized for it

76 | PV286 - Static analysis of software

http://samate.nist.gov/SRD/testsuite.php
https://ieeexplore.ieee.org/document/6032220

https://crocs.fi.muni.cz @CRoCS_MUNI

SUMMARY

77 | PV286 - Static analysis of software

https://crocs.fi.muni.cz @CRoCS_MUNI

Summary

• Static analysis is VERY important tool for writing secure software

– Significant portion of analysis done already by compiler (errors, warnings)

– Can run on unfinished code

• Multiple tools exist (both free and commercial)

– Predefined set of rules, custom rules can be also written

– Differ in capability, supported languages, target audience, maturity…

– Experiment with available tools and find the right for your scenario

• Static analysis cannot find all problems

– Problem of false positives/negatives

– No substitution for extensive testing and defensive programming

78 | PV286 - Static analysis of software

https://crocs.fi.muni.cz @CRoCS_MUNI

(Mandatory) reading

• Coverity open-source reports 2013/2014/2017/2020/2021
– Report of analysis for open-source projects

– https://web.archive.org/web/20200320234505/https://www.synopsys.com/content/dam/synopsys/sig-assets/reports/SCAN-Report-

2017.pdf

– https://ttpsc.com/wp3/wp-content/uploads/2020/10/2020-ossra-report.pdf

– https://web.archive.org/web/20220315064102/https://www.synopsys.com/content/dam/synopsys/sig-assets/reports/rep-ossra-

2021.pdf

– https://www.synopsys.com/content/dam/synopsys/sig-assets/reports/rep-ossra-2022.pdf

– https://www.synopsys.com/content/dam/synopsys/sig-assets/reports/rep-ossra-2023.pdf

• How open-source and closed-source compare w.r.t. number of defects?

• How does open-source vs. closed-source address OWASP Top 10?

• What are typical issues in C/C++ code?

• How has the situation changed from 2017 onward?

• Optional reading: https://www.cl.cam.ac.uk/~rja14/Papers/wcf.pdf

79 | PV286 - Static analysis of software

https://web.archive.org/web/20200320234505/https:/www.synopsys.com/content/dam/synopsys/sig-assets/reports/SCAN-Report-2017.pdf
https://web.archive.org/web/20200320234505/https:/www.synopsys.com/content/dam/synopsys/sig-assets/reports/SCAN-Report-2017.pdf
https://ttpsc.com/wp3/wp-content/uploads/2020/10/2020-ossra-report.pdf
https://web.archive.org/web/20220315064102/https:/www.synopsys.com/content/dam/synopsys/sig-assets/reports/rep-ossra-2021.pdf
https://web.archive.org/web/20220315064102/https:/www.synopsys.com/content/dam/synopsys/sig-assets/reports/rep-ossra-2021.pdf
https://www.synopsys.com/content/dam/synopsys/sig-assets/reports/rep-ossra-2022.pdf
https://www.synopsys.com/content/dam/synopsys/sig-assets/reports/rep-ossra-2023.pdf
https://www.cl.cam.ac.uk/~rja14/Papers/wcf.pdf

https://crocs.fi.muni.cz @CRoCS_MUNI80 | PV286 - Static analysis of software

Questions

	Slide 1: PV286 - Secure coding principles and practices
	Slide 2: This Lecture
	Slide 3: Problem
	Slide 4: What is wrong with this code?
	Slide 5: OpenSSL Heartbleed – “packet repeater”
	Slide 6: Problem?
	Slide 7: How serious the bug was?
	Slide 8: Defensive programming
	Slide 9: “Security features != Secure features”
	Slide 10: Static and dynamic analysis
	Slide 11: How to find bugs in code?
	Slide 12: Approaches for automated code review
	Slide 13: Microsoft’s Secure Development Lifecycle
	Slide 14: Seven Touchpoints for Software Security (by Cigital)
	Slide 15: Static vs. dynamic analysis
	Slide 16: Example of output produced by analyzer
	Slide 17: Types of static analysis
	Slide 19: Type checking
	Slide 20: Style checking
	Slide 21: Program formal verification
	Slide 22: Bug finding
	Slide 23: Security analysis and review
	Slide 24: Before digging to concrete tools…
	Slide 25: Static analysis limitations
	Slide 26: Problem of false positives/negatives
	Slide 27: False positives – limits of static analysis
	Slide 28: False positives – limits of static analysis
	Slide 29: False positives – limits of static analysis
	Slide 30: False positives – limits of static analysis
	Slide 31: Always design for testability
	Slide 32: Build-in CompileR analysis
	Slide 33: Example (MSVC flags)
	Slide 34: Warnings – how compiler signals potential troubles
	Slide 35: warning C4018: '>=' : signed/unsigned mismatch
	Slide 36: warning C4018: '>=' : signed/unsigned mismatch cont’d
	Slide 37: Recommendations for MSVC CL
	Slide 38: Recommendations for GCC
	Slide 39: Compatibility issues?
	Slide 40: GCC -ftrapv
	Slide 41: Static analysis TOOLS
	Slide 43: Both free and commercial tools
	Slide 46: Cppcheck
	Slide 47: Cppcheck – what is checked?
	Slide 48: Cppcheck – categories of problems
	Slide 49: Cppcheck
	Slide 52: cppcheck.exe --rule="pass[word]*" file.cpp
	Slide 53: Cppcheck – complex custom rules
	Slide 56: PREfast - Microsoft static analysis tool
	Slide 58: PREfast – example bufferOverflow
	Slide 59: PREfast – what can be detected
	Slide 60: PREfast settings
	Slide 62: Flawfinder
	Slide 63: Flawfinder - example
	Slide 64: Coverity (free for open-source)
	Slide 65
	Slide 66: Code scanning with GitHub + Actions + Codacy
	Slide 67: SpotBugs
	Slide 69: PMD Source Code Analyzer
	Slide 70: How to reason about available tooling
	Slide 71: How many false positives are too many?
	Slide 72: Static analysis is NOT panacea
	Slide 73
	Slide 74: Type overflow – example with dynalloc
	Slide 75: What potential bug was not found?
	Slide 76: Test suites – vulnerable code, benchmark
	Slide 77: Summary
	Slide 78: Summary
	Slide 79: (Mandatory) reading
	Slide 80

