
www.crcs.cz/rsa @CRoCS_MUNI

PV286 - Secure coding principles and

practices

Automata-based programming

Designing good and secure API

Łukasz Chmielewski chmiel@fi.muni.cz (based on the lecture by P. Svenda)

(email me with your questions/feedback)

Centre for Research on Cryptography and Security, Masaryk University

Consultation hours: Friday 9.30-11.00 in A406 (but email me before).

mailto:chmiel@fi.muni.cz

www.crcs.cz/rsa @CRoCS_MUNI

Overview

• Today’s Lecture:

– How to write good & secure API

– automata-based programming

– In the corresponding PA193 seminars, the participants will write a small security

API and model the inner state with an automata-based design.

• There is a ROPOT this week

• Resources:

– We are recording so the video should be published next week.

– Recording from the last year (online lecture):
• https://is.muni.cz/auth/el/fi/jaro2023/PV286/um/lectures/lecture9_api/

– Materials: https://is.muni.cz/auth/el/fi/jaro2024/PV286/um/lecture7_secureapi_automataprogramming

2 PV286 | Secure API, Automata-based programming

https://is.muni.cz/auth/el/fi/jaro2023/PV286/um/lectures/lecture9_api/
https://is.muni.cz/auth/el/fi/jaro2024/PV286/um/lecture7_secureapi_automataprogramming

www.crcs.cz/rsa @CRoCS_MUNI

ORGANIZATIONAL

3 PV286 | Secure API, Automata-based programming

www.crcs.cz/rsa @CRoCS_MUNI

Rules about the project

• The deadline for the nearest deadline of the project is on 17/04.

– Please work on that!

• No plagiarism!

• Commit only to your work and not the work of other people!

– We need to differentiate between your efforts within teams.

• Everyone needs to work on the code!

– For example, concentrating on writing the report is not enough.

4 PV286 | Secure API, Automata-based programming

www.crcs.cz/rsa @CRoCS_MUNI

PROBLEM

5 PV286 | Secure API, Automata-based programming

www.crcs.cz/rsa @CRoCS_MUNI

What is this device for?

6 PV286 | Secure API, Automata-based programming

IBM 4758 Hardware Security Module (HSM)

www.crcs.cz/rsa @CRoCS_MUNI

Hardware Security Modules (HSM)

• Hardware Security Modules are high-security devices

– small security computer

• RAM, CPU, storage...

• resilience against tampering, side-channels...

– support various cryptographic operations

– keys are generated, stored and used directly on the device

– additional restricted code can be uploaded (firmware)

• HSM exposes its functionality via API

– E.g., encrypt supplied data with key generated inside HSM

• HSM is trusted, accessed by not-so-trusted applications

– HSM’s API serves as wall between different levels of trust

– Intentionally limits visibility and access

7 PV286 | Secure API, Automata-based programming

API

Security API

www.crcs.cz/rsa @CRoCS_MUNI

API

8 PV286 | Secure API, Automata-based programming

www.crcs.cz/rsa @CRoCS_MUNI

When we use API?

• All the time ☺

• When using function from standard library

• When using external library

• When calling system (Win32 API, POSIX...)

• When calling methods of our own class

• ...

9 PV286 | Secure API, Automata-based programming

www.crcs.cz/rsa @CRoCS_MUNI

When we design API?

• Almost all the time ☺

• Function signature is API for this function usage

• List of public methods in interface is its API

• When we create good API?

– good programming habit is to create reusable modules

– every module has its own API

– once module will get reused, API cannot be changed (easily)

10 PV286 | Secure API, Automata-based programming

www.crcs.cz/rsa @CRoCS_MUNI

Application programming interface (API)

• Different types of API

1. Non-security API

– any library API (module/library interface)

– e.g., C++ STL, Boost library, Web REST API...

2. Cryptographic API

– set of functions for cryptographic operations

– e.g., Microsoft CryptoAPI, OpenSSL API...

3. Security API

– allows untrusted code to access sensitive resources in secure way

– e.g., PKCS#11 HSM module, suExec, OAuth

11 PV286 | Secure API, Automata-based programming

www.crcs.cz/rsa @CRoCS_MUNI

What is API and ABI?

• API = Application Programming Interface

– source code-based specification intended to be used as an interface between software

components to communicate

– classes, interfaces, methods, structure of json for webapi...

• ABI = Application Binary Interface

– specification of interface on binary level

– size, binary representation and layout of data types

– function calling conventions (stdcall, decl...)

– how to make system calls (functions outside program memory)

– binary formats of data produced (little/big endian…)

• API != ABI, but both are necessary

12 PV286 | Secure API, Automata-based programming

www.crcs.cz/rsa @CRoCS_MUNI

Language (in)dependent API

• Language dependent API

– API available only for one particular language

– ABI is relevant (calling convention, memory layout…)

• Language independent API

– Not restricted to particular languages

– E.g., Web API based on HTTP/REST/JSON

• Language bindings

– Bridge between particular language and library/OS API

– E.g., library implemented in C, but called from Python

– Additional API in target language with small proxy code

13 PV286 | Secure API, Automata-based programming

www.crcs.cz/rsa @CRoCS_MUNI

Web API

• Web API = API used to invoke method on web server

– Usually via HTTP(S) with REST

– Language independent API

• E.g., Twitter API
– POST https://api.twitter.com/1.1/statuses/update.json?status=At%20PA193

• Application programming interface key (API key)

– Code supplied by program calling an API

– Identifies program, developer, user…

– Can be used to control usage (e.g., limit requests…)

14 PV286 | Secure API, Automata-based programming

www.crcs.cz/rsa @CRoCS_MUNI

Quiz – where is API stored?

• Language: C

– API: Functions listed in header files (*.h)

• Language: C++

– API: public methods of class

– API: public methods of abstract class

• Language: Java

– API: public methods of class

– API: methods of interface

• Twitter Web API

– API: HTTP/REST requests, response in JSON format

15 PV286 | Secure API, Automata-based programming

© Martin Handford

www.crcs.cz/rsa @CRoCS_MUNI

PRINCIPLES OF GOOD API

16 PV286 | Secure API, Automata-based programming

www.crcs.cz/rsa @CRoCS_MUNI

Credits: Joshua Bloch

• Joshua Bloch, How to Design a Good API and Why it Matters

(Google)
– https://web.archive.org/web/20140209043631/http://lcsd05.cs.tamu.edu/slides/keynote.pdf

– video: http://www.infoq.com/presentations/effective-api-design

• Reading/watching is highly recommended

• Many ideas have been taken from his presentation

– demonstrated on cryptographic libraries by myself

18 PV286 | Secure API, Automata-based programming

http://lcsd05.cs.tamu.edu/slides/keynote.pdf
http://www.infoq.com/presentations/effective-api-design

www.crcs.cz/rsa @CRoCS_MUNI

Principles of good API (Joshua Bloch)

1. Easy to learn

2. Easy to use, even without documentation

3. Hard to misuse

4. Easy to read and maintain code that uses it

5. Sufficiently powerful to satisfy requirements

6. Easy to extend

7. Appropriate to audience
• https://web.archive.org/web/20140209043631/http://lcsd05.cs.tamu.edu/slides/keynote.pdf

19 PV286 | Secure API, Automata-based programming

https://web.archive.org/web/20140209043631/http:/lcsd05.cs.tamu.edu/slides/keynote.pdf

www.crcs.cz/rsa @CRoCS_MUNI

Process of API design (Joshua Bloch)

1. Gather requirements

2. Start with short specification (1 page)

3. Write API early and often

4. Test and use your API

– especially when designing SPI (Service Providers Interface)

– write more plugins (one – NOK, two – difficult, three - OK)

5. Prepare for evolution and mistakes

– displease everyone equally

20 PV286 | Secure API, Automata-based programming

www.crcs.cz/rsa @CRoCS_MUNI21 PV286 | Secure API, Automata-based programming

What is Service Provider Interface?

www.crcs.cz/rsa @CRoCS_MUNI

General principles - encapsulation

• API should do one thing and do it well

• As small as possible, but not smaller

– if in doubt, leave function out (you can add, but not remove)

• Implementation details should not leak into API

– try to hide as much as possible from user

• Minimalize accessibility (encapsulation)

– make public what really needs to be

– no public fields (attributes) except constants

• Make understandable names (self-explanatory, consistent, easy to

read when used)

24 PV286 | Secure API, Automata-based programming

if (key.length() < 80)
generateAlert(”NSA can crack!”);

www.crcs.cz/rsa @CRoCS_MUNI

General principles - documentation

• Document rigorously

– JavaDoc, Doxygen…

– specify how function should be used

– class: what instance represents

– Method: a contract between method and client

• preconditions, postconditions, side effects

– Parameters: who owns (ptr), units, format...

• Specific case of documentation are Annotations

– e.g., Microsoft SAL, pre&post conditions, Java annotations…

25 PV286 | Secure API, Automata-based programming

void* memcpy(void* destination, const void* source, size_t num);

void* memcpy(__out_bcount(num) void* destination,

__in_bcount(num) const void* source, size_t num);

/**
* \brief Output = HMAC-SHA-512(hmac key, input buffer)
*
* \param key HMAC secret key
* \param keylen length of the HMAC key
* \param input buffer holding the data
* \param ilen length of the input data
* \param output HMAC-SHA-384/512 result
* \param is384 0 = use SHA512, 1 = use SHA384
*/

www.crcs.cz/rsa @CRoCS_MUNI

Which one you like more? Why?

27 PV286 | Secure API, Automata-based programming

POLARSSL
/**
* \brief Output = HMAC-SHA-512(hmac key, input buffer)
*
* \param key HMAC secret key
* \param keylen length of the HMAC key
* \param input buffer holding the data
* \param ilen length of the input data
* \param output HMAC-SHA-384/512 result
* \param is384 0 = use SHA512, 1 = use SHA384
*/

void sha512_hmac(const unsigned char *key, size_t keylen,
const unsigned char *input, size_t ilen,
unsigned char output[64], int is384);

OPENSSL
unsigned char *HMAC(const EVP_MD *evp_md, const void *key, int key_len,

const unsigned char *d, size_t n, unsigned char *md,
unsigned int *md_len);

www.crcs.cz/rsa @CRoCS_MUNI

OpenSSL – HMAC  (hard to understand)

28 PV286 | Secure API, Automata-based programming

//hmac.h
unsigned char *HMAC(const EVP_MD *evp_md, const void *key, int key_len,

const unsigned char *d, size_t n, unsigned char *md,
unsigned int *md_len);

//envp.h
struct env_md_st

{
int type;
int pkey_type;
int md_size;
unsigned long flags;
int (*init)(EVP_MD_CTX *ctx);
int (*update)(EVP_MD_CTX *ctx,const void *data,size_t count);
int (*final)(EVP_MD_CTX *ctx,unsigned char *md);
int (*copy)(EVP_MD_CTX *to,const EVP_MD_CTX *from);
int (*cleanup)(EVP_MD_CTX *ctx);

/* FIXME: prototype these some day */
int (*sign)(int type, const unsigned char *m, unsigned int m_length,

unsigned char *sigret, unsigned int *siglen, void *key);
int (*verify)(int type, const unsigned char *m, unsigned int m_length,

const unsigned char *sigbuf, unsigned int siglen,
....

} /* EVP_MD */;

//ossl_typ.h
typedef struct env_md_st EVP_MD;

www.crcs.cz/rsa @CRoCS_MUNI

General principles - performance

• Consider performance impact of API decisions

– but be not influenced by implementation details

– underlying performance issues will be fixed eventually, but API warping (for fixing past

issue) remains

• Examples of bad performance decisions

– need for frequent allocations and copy constructors

• pass arguments by reference or pointer

• use copy free functions

– usage of mutable objects instead of immutable

• use const everywhere possible

– need for frequent re-coding (byte[] -> string -> byte[])

29 PV286 | Secure API, Automata-based programming

www.crcs.cz/rsa @CRoCS_MUNIPV286 | Secure API, Automata-based programming

Copy-free functions

• API style which minimizes array copy operations

• Frequently used in cryptography

– we take block, process it and put back

– can take place inside original memory array

• int encrypt(byte array[], int startOffset, int length);

– encrypt data from startOffset to startOffset + length;

• Wrong(?) example:

– int encrypt(byte array[], int length, byte outArray[], int* pOutLength);

– note: C/C++ can still use pointers arithmetic

– note: Java can’t (we need to create new array)

30

www.crcs.cz/rsa @CRoCS_MUNI

Sensitive data (keys) in memory

• What is the difference?

• Try to limit copies of sensitive data in memory

– potential unintended disclosure (memory, swap…)

• Pass by value requires more memory erases

– What about Java’s pass by value of reference?

31 PV286 | Secure API, Automata-based programming

int set_key(Key_t key, pin_t seal_pin);
vs.

int set_key(Key_t* key, pin_t* seal_pin);

www.crcs.cz/rsa @CRoCS_MUNI

General principles – static factory

• Use static factory instead of class constructor

– e.g., javacardx.crypto & class::getInstance()

– e.g., javacardx.crypto & class::buildKey()

32 PV286 | Secure API, Automata-based programming

import javacardx.crypto.*;

// CREATE AES KEY OBJECT

m_aesKey = (AESKey) KeyBuilder.buildKey(KeyBuilder.TYPE_AES_TRANSIENT_DESELECT,

KeyBuilder.LENGTH_AES_256, false);

// CREATE OBJECTS FOR CBC CIPHERING

m_encryptCipher = Cipher.getInstance(Cipher.ALG_AES_BLOCK_128_CBC_NOPAD, false);

m_decryptCipher = Cipher.getInstance(Cipher.ALG_AES_BLOCK_128_CBC_NOPAD, false);

// CREATE RANDOM DATA GENERATOR

m_secureRandom = RandomData.getInstance(RandomData.ALG_SECURE_RANDOM);

// CREATE SHA256 ENGINE

m_sha256 = MessageDigest.getInstance(MessageDigest.ALG_SHA_256, false);

www.crcs.cz/rsa @CRoCS_MUNI

General principles – static factory

• Advantages of static factory over constructors

– provides named "constructors“ (getInstance, buildKey)

– can return null, if appropriate

– can return an instance of a derived class, if appropriate

– reduce verbosity when instantiating variables of generic/template types (no

need to write type twice)

– allows immutable classes to use pre-constructed instances or to cache

instances (speed)

– http://www.informit.com/articles/article.aspx?p=1216151
33 PV286 | Secure API, Automata-based programming

Map<String, list<String>>* m = new HashMap<String, List<String>>();
vs.

Map<String, list<String>> m = HashMap.newInstance();

http://www.informit.com/articles/article.aspx?p=1216151

www.crcs.cz/rsa @CRoCS_MUNI

General principles – behave as expected

• Principle of the last astonishment

– user should not be surprised by API behavior

• Be careful with overloading

– Use different names for methods when having the same number of arguments

– same behavior for same (position of) arguments

• Fail fast – report error as soon as possible

– failure in compile time is better

– during runtime, the first method invocation with a bad state should fail

• Provide methods to obtain data elements from results

provided originally in strings

– Do not force the programmer to parse strings

34 PV286 | Secure API, Automata-based programming

www.crcs.cz/rsa @CRoCS_MUNI

Example: Avoid long parameter lists

36 PV286 | Secure API, Automata-based programming

WIN32 API
HWND WINAPI CreateWindow(

_In_opt_ LPCTSTR lpClassName,
_In_opt_ LPCTSTR lpWindowName,
In DWORD dwStyle,
In int x,
In int y,
In int nWidth,
In int nHeight,
_In_opt_ HWND hWndParent,
_In_opt_ HMENU hMenu,
_In_opt_ HINSTANCE hInstance,
_In_opt_ LPVOID lpParam

);

QT API
QWidget window;
window.setWindowTitle("Window title");
window.resize(320, 240);
...
window.show();

Which one you like more?

Why?

www.crcs.cz/rsa @CRoCS_MUNI

General principles - parameters

• Avoid long parameter lists

– three or fewer parameters ideal (including default values)

• mistake in filling arguments might be missed in compile

• When more parameters are required:

– break the method into more methods

– Or encapsulate multiple arguments into a single class/struct

• Use consistent parameter ordering (src vs. desc)

37 PV286 | Secure API, Automata-based programming

#include <string.h>
char *strcpy (char* dest, char* src);
void bcopy (void* src, void* dst, int n);

Bad example

from C stdlib

www.crcs.cz/rsa @CRoCS_MUNI

Security API

• “A security API allows untrusted code to access sensitive resources in a

secure way.” Graham Steel

• Interface between different levels of trust

• Security API is designed to enforce a policy

– certain predefined security properties should always hold

– e.g., private key cannot be used before user is authenticated

• Security API is not equal to security protocols

– but closely related

– security protocol == short program how principals communicate

– security API == set of short programs called in any order

• http://www.lsv.ens-cachan.fr/~steel/security_APIs_FAQ.html

• http://www.cl.cam.ac.uk/~rja14/Papers/SEv2-c18.pdf

38 PV286 | Secure API, Automata-based programming

http://www.lsv.ens-cachan.fr/~steel/security_APIs_FAQ.html
http://www.cl.cam.ac.uk/~rja14/Papers/SEv2-c18.pdf

www.crcs.cz/rsa @CRoCS_MUNI

Security API attack

• API attack is sequence of commands (function calls) which breach

security policy of an interface

• “Pure” API attacks – only sequence of commands

– e.g., key value is directly revealed

• “Augmented” API attacks – additional brute-force computations

required

– e.g., 128bits key value is exported under 56bits key

39 PV286 | Secure API, Automata-based programming

www.crcs.cz/rsa @CRoCS_MUNI

Security API – problems in time

• Interfaces get richer and more complex over time

– pressure from customers to support more options

– economic pressures toward unsafe defaults

– Failures tend to arise from complexity, KISS!!!

– Hard to design secure API, and even harder to keep it secure

• Leaks when trusted component talks to less trusted

– Interface often leaks more information than anticipated by the designer of the

trusted component

40 PV286 | Secure API, Automata-based programming

www.crcs.cz/rsa @CRoCS_MUNI

Security API - typical problems

• Unexpected command sequences

– methods called in different order than expected

– use method call fuzzer to test

– use automata-based programing to verify proper state

• Unknown commands

– invalid values as method arguments

– always make extensive input verification

– use fuzzer to test

41 PV286 | Secure API, Automata-based programming

www.crcs.cz/rsa @CRoCS_MUNI

Security API - typical problems

• Commands in a wrong device mode

– sensitive operation (e.g., Sign()) called without previous authentication

– use methods order fuzzing to test

– use automata-based programing to ensure proper state

• Existence of undocumented API

– debugging API not removed (unintentionally)

– security by obscurity (be aware of reverse engineering)

– example: Crysalis Luna module (key extraction)

• http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-592.pdf

45 PV286 | Secure API, Automata-based programming

http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-592.pdf

www.crcs.cz/rsa @CRoCS_MUNI

Security API - typical problems

• Multiple different APIs to single component/storage

– contracts within one set of API may be broken by second set

– possible interleaving of function calls from different APIs

– Example: Ultimaco HSM APIs

• Microsoft world: CNG, CSP, EKMI

• JCE, PKCS#11, OpenSSL

• administration API's: IT monitoring SNMP

– Example: IBM 4758 HSM APIs

• IBM CCA, VISA EMV, PKCS#11...

• IBM proprietary

• Attacks already used in the wild for large scale attacks

– http://www.wired.com/threatlevel/2009/04/pins/

46 PV286 | Secure API, Automata-based programming

http://www.wired.com/threatlevel/2009/04/pins/

www.crcs.cz/rsa @CRoCS_MUNI

Security API: best practices

• Use API keys, not Username/Password

– e.g., OAuth instead of Basic Auth

• Don’t use sessions (if possible)

– build API as RESTful services

– “Each request from any client contains all of the information necessary to

service the request, and any session state is held in the client.” REST Wikipedia

– check client input extensively (including state)

• Supply methods for secure erase of sensitive data

47 PV286 | Secure API, Automata-based programming

www.crcs.cz/rsa @CRoCS_MUNI

Security API: best practices

• Use TLS when secure channel is required

– or other suitable secure channel, don’t build one yourself

• Look at mature APIs for best practice examples

– Foursquare, Twitter, and Facebook...

• Don’t use weak cryptographic algorithms

– MD5, RC4... Old NSA saying: “Cryptanalysis always gets better. It never gets

worse.”

• Don’t hardcode particular algorithms into API

– and be prepared for change

(e.g., BlockCipher interface instead of AES)

48 PV286 | Secure API, Automata-based programming

www.crcs.cz/rsa @CRoCS_MUNI

Formal verification of security API

• Harder than security protocol analysis

– security API typically consist of tens of functions called in any order

– security protocol only few messages executed in predefined sequence

• Initially applied only to small APIs, now getting better

– Very helpful as bug hunting tool

• Many interesting practical results

– real attacks against PKCS#11 devices

– PKCS#11 RSA’s token problem found

• Proofs of security within given model may be given

• http://www.lsv.ens-cachan.fr/~steel/security_APIs_FAQ.html

49 PV286 | Secure API, Automata-based programming

http://www.lsv.ens-cachan.fr/~steel/security_APIs_FAQ.html

www.crcs.cz/rsa @CRoCS_MUNI

CODE ANNOTATIONS

54 PV286 | Secure API, Automata-based programming

www.crcs.cz/rsa @CRoCS_MUNI

Motivation for making annotations

• More semantics of code available for checker

– Capture otherwise missed bugs

• More explicit documentation of code/API

– Ideally automatically testable

– Problems captured in compile time

• Compliancy requirements

– Driver signature by Microsoft, a must for 64b Windows

• …

55 PV286 | Secure API, Automata-based programming

www.crcs.cz/rsa @CRoCS_MUNI

Microsoft SDL C/C++ static checker

• Problems not found by PREfast checker by default

• Achievable via source-code annotation language (SAL)

– check of return value

– argument must be not NULL

– string must be terminated

– length of data read / written into buffer

• Additional requirements are added to declaration of function, structure... via

(non-standard) keywords

• Validity of such requirements are checked by PREfast

– in pre-state (before fnc call) & in post-state (after fnc call)

56 PV286 | Secure API, Automata-based programming

www.crcs.cz/rsa @CRoCS_MUNI

SAL – examples (in and out buffer)

57 PV286 | Secure API, Automata-based programming

// read from buffer with size equal to length

int readData(void *buffer, int length);
int readData(_In_reads_(length) void *buffer, int length);

// writes specified amount (length) of data into buffer

int fillData(void *buffer, int *length);
int fillData(_Out_writes_all_(length) void *buffer, const int length);

www.crcs.cz/rsa @CRoCS_MUNI

SAL – basic terms

• Element is valid if contains explicitly assigned value

– Item of allocated array with unassigned value is invalid

• Valid in pre-condition (before function is called)

– Annotation typically starts with In_xxx

• Valid in post-condition (when function ends)

– Annotation typically starts with Out_xxx

• Number of specified bytes vs. items

– Default is number of items, bytes if _bytes_ added

– Number of elements valid

59 PV286 | Secure API, Automata-based programming

www.crcs.cz/rsa @CRoCS_MUNI

SAL functions basics

• Optional version of arguments

– argument might be NULL

– _In_opt, _Out_opt...

– function must perform check before use

• Otherwise PREFast will report error

60 PV286 | Secure API, Automata-based programming

https://learn.microsoft.com/en-us/previous-versions/visualstudio/visual-

studio-2015/code-quality/understanding-sal

https://learn.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2015/code-quality/understanding-sal
https://learn.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2015/code-quality/understanding-sal

www.crcs.cz/rsa @CRoCS_MUNI

SAL functions basics II.

• Pointer type annotations

• _Outptr_

– should not be NULL

– should be initialized

• _Outptr_opt_

– can be NULL, must be checked

61 PV286 | Secure API, Automata-based programming

www.crcs.cz/rsa @CRoCS_MUNI

• PREfast analysis

62 PV286 | Secure API, Automata-based programming

void salDemo(_In_ int* pInArray, _Outptr_ int** ppArray) {

}

int main(int argc, char* argv[]) {

int* pArray = NULL;

int* pArray2 = NULL;

if (strcmp(argv[1], "alloc") == 0) {pArray = new int[5];}

salDemo(pArray, &pArray2);

return 0;

}

test.cpp(34): warning : C6101: Returning uninitialized memory '*ppArray'. A successful
path through the function does not set the named _Out_ parameter.

test.cpp(49): warning : C6387: 'pArray' could be '0': this does not adhere to the
specification for the function 'salDemo'.

test.cpp(49): warning : C6001: Using uninitialized memory '*pArray'.

www.crcs.cz/rsa @CRoCS_MUNI

SAL annotations – much more

• Annotations of functions

– http://msdn.microsoft.com/en-us/library/hh916382.aspx

• Structs and classes can be also annotated

– http://msdn.microsoft.com/en-us/library/jj159528.aspx

• Locking behavior for concurrency can be annotated

– http://msdn.microsoft.com/en-us/library/hh916381.aspx

• Whole function can be annotated

– http://msdn.microsoft.com/en-us/library/jj159529.aspx

– _Must_inspect_result_

• Best practices

– http://msdn.microsoft.com/en-us/library/jj159525.aspx

• Some extra information: https://www.codeproject.com/Reference/879527/SAL-Function-Parameters-Annotations

63 PV286 | Secure API, Automata-based programming

http://msdn.microsoft.com/en-us/library/hh916382.aspx
http://msdn.microsoft.com/en-us/library/jj159528.aspx
http://msdn.microsoft.com/en-us/library/hh916381.aspx
http://msdn.microsoft.com/en-us/library/jj159529.aspx
http://msdn.microsoft.com/en-us/library/jj159525.aspx
https://www.codeproject.com/Reference/879527/SAL-Function-Parameters-Annotations

www.crcs.cz/rsa @CRoCS_MUNI

SAL – examples (in and out buffer)

64 PV286 | Secure API, Automata-based programming

// read from buffer with size equal to length

int readData(void *buffer, int length);
int readData(_In_reads_(length) void *buffer, int length);

// writes specified amount (length) of data into buffer

int fillData(void *buffer, int *length);
int fillData(_Out_writes_all_(length) void *buffer, const int length);

// writes into buffer maxLength at max, but possibly less and modifies also length argument

int fillData(void *buffer, const int maxLength, int *length);
// Check if no more then maxLength and *length is written, also check range of length

int fillData(__Out_writes_to_(maxLength, *length) void *buffer,
const int maxLength, _Out_range_(0, maxLength-1) int *length);

// read AND write from buffer

int readWriteData(void *buffer, int length);
int readWriteData(_Inout_updates_(length) void *buffer, int length);

www.crcs.cz/rsa @CRoCS_MUNI

SAL – examples (pointers, strings)

65 PV286 | Secure API, Automata-based programming

// pass argument by value foo pointer

int getInfo(struct thing *thingPtr);
// value is used as input and output => _Inout_

int getInfo(_Inout_ struct thing *thingPtr);

// pass C null-terminated strings

int writeString(const char *string);
// must be null terminated string > _In_z_

int writeString(_In_z_ const char *string);

www.crcs.cz/rsa @CRoCS_MUNI

Annotations for GCC/LLVM

• Deputy

– Not active anymore , last update 2006?

– http://ivy.cs.berkeley.edu/ivywiki/uploads/deputy-manual.html

• Clang Static Analyzer

– http://clang-analyzer.llvm.org/annotations.html

– Only few annotations

68 PV286 | Secure API, Automata-based programming

http://ivy.cs.berkeley.edu/ivywiki/uploads/deputy-manual.html
http://clang-analyzer.llvm.org/annotations.html

www.crcs.cz/rsa @CRoCS_MUNI

Splint (is simple to use?)

• SAL version

• Splint version

69 PV286 | Secure API, Automata-based programming

void strcpy(_Out_z char *s1, _In_z const char *s2);

void /*@alt char * @*/ strcpy(
/*@unique@*/ /*@out@*/ /*@returned@*/ char *s1, char *s2)
/*@modifies *s1@*/ /*@requires maxSet(s1) >= maxRead(s2) @*/
/*@ensures maxRead(s1) == maxRead(s2) @*/;

www.crcs.cz/rsa @CRoCS_MUNI

SIDE-CHANNEL PROTECTED CRYPTO

LIBRARY API

EXCEPTIONS?

70 PV286 | Secure API, Automata-based programming

www.crcs.cz/rsa @CRoCS_MUNI

What changes for side-channel protected library?

• What is the scope of the side-channel protected crypto library?

– Crypto functions are there…

– What about copying, comparison, handling, wiping the keys,

– What about the initialization of the crypto-library? Memory protections perhaps? Is RNG

secure and only accessible to the library?

• What about a calling convention?

– Examples from the lecture

“Programming in the presence of side-channels / faults”

71 PV286 | Secure API, Automata-based programming

An example: https://github.com/sca-secure-library-sca25519/sca25519

https://github.com/sca-secure-library-sca25519/sca25519

www.crcs.cz/rsa @CRoCS_MUNI

AUTOMATA-BASED PROGRAMMING

72 PV286 | Secure API, Automata-based programming

www.crcs.cz/rsa @CRoCS_MUNI

Automata-based style program

• Program (or its part) is though of as a model of finite state machine (FSM)

• Basic principles

– Automata state (explicit designation of FSM state)

– Automata step (transition between FSM states)

– Explicit state transition table (not all transitions are allowed)

• Practical implementation

– imperative implementation (switch over states)

– object-oriented implementation (encapsulates complexity)

• https://en.wikipedia.org/wiki/Automata-based_programming

73 PV286 | Secure API, Automata-based programming

https://en.wikipedia.org/wiki/Automata-based_programming

www.crcs.cz/rsa @CRoCS_MUNI

Example: SimpleSign applet

• Simple smart card applet for digital signature

– Operation 1: user must verify UserPIN before private key usage for signature is

allowed

– Operation 2: unblock of user pin allowed only after successful AdminPIN

verification

• Imperative solution:

– sensitive operation (Sign()) is wrapped into condition testing successful PIN

verification

– more conditions may be required (PIN and < 5 signatures)

– same signature operation may be called from different

contexts (SignHash(), ComputeHashAndSign())

76 PV286 | Secure API, Automata-based programming

www.crcs.cz/rsa @CRoCS_MUNI

SimpleSign – imperative solution

77 PV286 | Secure API, Automata-based programming

void SignData(APDU apdu) {
// ...

// INIT WITH PRIVATE KEY

if (m_userPIN.isValidated()) {
// INIT WITH PRIVATE KEY

m_sign.init(m_privateKey, Signature.MODE_SIGN);

// SIGN INCOMING BUFFER

signLen = m_sign.sign(apdubuf, ISO7816.OFFSET_CDATA,
(byte) dataLen, m_ramArray, (byte) 0);

// ... SEND OUTGOING BUFFER

}
else ISOException.throwIt(SW_SECURITY_STATUS_NOT_SATISFIED);

// ...
}

Test of required condition

Execution of sensitive operation

www.crcs.cz/rsa @CRoCS_MUNI

Example: states for smart card applet

78 PV286 | Secure API, Automata-based programming

digraph StateModel {
rankdir=LR;
size="6,6";
node [shape =ellipse color=green, style=filled];
{ rank=same; "STATE_UPLOADED";"STATE_INSTALLED";}
"STATE_INSTALLED";
"STATE_UPLOADED";
"STATE_UPLOADED" -> "STATE_INSTALLED" [label="install()"];
{ rank=same; "STATE_SELECTED";}
"STATE_SELECTED";
{ rank=same;"STATE_USER_AUTH";"STATE_ADMIN_AUTH";}
"STATE_USER_AUTH" ;
"STATE_ADMIN_AUTH" ;

"STATE_INSTALLED" -> "STATE_SELECTED" [label="select()" color="black" fontcolor="black"];
"STATE_SELECTED" -> "STATE_USER_AUTH" [label="VerifyUserPIN()" color="black" fontcolor="black"];
"STATE_SELECTED" -> "STATE_ADMIN_AUTH" [label="VerifyAdminPIN()" color="black" fontcolor="black"];
...

www.crcs.cz/rsa @CRoCS_MUNI

SimpleSign – automata-based solution

1. Mental model → .dot format (human readable)

– Graphviz visualization (visual inspection)

– source code generated for state check and transition check

– input for formal verification (state reachability)

2. Easy to extend by new states

– source code is generated again

3. More robust against programming mistakes and omissions

79 PV286 | Secure API, Automata-based programming

www.crcs.cz/rsa @CRoCS_MUNI

Is transition allowed between given states?

• E.g., is allowed to change state directly from STATE_UPLOADED to

STATE_ADMIN_AUTH?

80 PV286 | Secure API, Automata-based programming

www.crcs.cz/rsa @CRoCS_MUNI

Is function call allowed in present state?

• E.g., do not allow to use private key before UserPIN was verified

81 PV286 | Secure API, Automata-based programming

private void checkAllowedFunction(short requestedFunction) {

switch (requestedFunction) {

case FUNCTION_VerifyUserPIN:

if (m_currentState == STATE_SELECTED) break;

_OperationException(EXCEPTION_FUNCTIONEXECUTION_DENIED);

case FUNCTION_SignData:

if (m_currentState == STATE_USER_AUTH) break;

_OperationException(EXCEPTION_FUNCTIONEXECUTION_DENIED);

...
Sign data only when in

STATE_USER_AUTH

www.crcs.cz/rsa @CRoCS_MUNI

How to react on incorrect state transition

• Depends on particular application

– create error log entry

– throw exception

– terminate process

– ...

• Error message should not reveal too much

– side-channel attack based on error content

– Enable padding oracle attacks…

82 PV286 | Secure API, Automata-based programming

www.crcs.cz/rsa @CRoCS_MUNI

SimpleSign – additional functionality

• Programs almost always change in time

• If new functionality is required:

– E.g., signature allowed also after verification of AdminPIN

• Changes required in imperative solution:

– add additional condition before every Sign()

– when called from multiple places, developer may forgot to include conditions to all places

– not easy to realize, what conditions are required from existing code

• Changes required in automata-based solution:

– add new state transition (STATE_ADMIN_AUTH <-> SignData())

– generate new transition tables etc.

83 PV286 | Secure API, Automata-based programming

www.crcs.cz/rsa @CRoCS_MUNI

SUMMARY

84 PV286 | Secure API, Automata-based programming

www.crcs.cz/rsa @CRoCS_MUNI

Summary

• Designing good API is hard

– follow best practices, learn from well-established APIs

• Designing security API is even harder

• Automata-based programming

– make more robust state and transition validation

– good to combine with visualization and automatic code generation

85 PV286 | Secure API, Automata-based programming

Questions

	Slide 1: PV286 - Secure coding principles and practices
	Slide 2: Overview
	Slide 3: Organizational
	Slide 4: Rules about the project
	Slide 5: Problem
	Slide 6: What is this device for?
	Slide 7: Hardware Security Modules (HSM)
	Slide 8: API
	Slide 9: When we use API?
	Slide 10: When we design API?
	Slide 11: Application programming interface (API)
	Slide 12: What is API and ABI?
	Slide 13: Language (in)dependent API
	Slide 14: Web API
	Slide 15: Quiz – where is API stored?
	Slide 16: Principles of good API
	Slide 18: Credits: Joshua Bloch
	Slide 19: Principles of good API (Joshua Bloch)
	Slide 20: Process of API design (Joshua Bloch)
	Slide 21: What is Service Provider Interface?
	Slide 24: General principles - encapsulation
	Slide 25: General principles - documentation
	Slide 27: Which one you like more? Why?
	Slide 28: OpenSSL – HMAC  (hard to understand)
	Slide 29: General principles - performance
	Slide 30: Copy-free functions
	Slide 31: Sensitive data (keys) in memory
	Slide 32: General principles – static factory
	Slide 33: General principles – static factory
	Slide 34: General principles – behave as expected
	Slide 36: Example: Avoid long parameter lists
	Slide 37: General principles - parameters
	Slide 38: Security API
	Slide 39: Security API attack
	Slide 40: Security API – problems in time
	Slide 41: Security API - typical problems
	Slide 45: Security API - typical problems
	Slide 46: Security API - typical problems
	Slide 47: Security API: best practices
	Slide 48: Security API: best practices
	Slide 49: Formal verification of security API
	Slide 54: Code Annotations
	Slide 55: Motivation for making annotations
	Slide 56: Microsoft SDL C/C++ static checker
	Slide 57: SAL – examples (in and out buffer)
	Slide 59: SAL – basic terms
	Slide 60: SAL functions basics
	Slide 61: SAL functions basics II.
	Slide 62
	Slide 63: SAL annotations – much more
	Slide 64: SAL – examples (in and out buffer)
	Slide 65: SAL – examples (pointers, strings)
	Slide 68: Annotations for GCC/LLVM
	Slide 69: Splint (is simple to use?)
	Slide 70: Side-Channel Protected Crypto Library API
	Slide 71: What changes for side-channel protected library?
	Slide 72: Automata-based programming
	Slide 73: Automata-based style program
	Slide 76: Example: SimpleSign applet
	Slide 77: SimpleSign – imperative solution
	Slide 78: Example: states for smart card applet
	Slide 79: SimpleSign – automata-based solution
	Slide 80: Is transition allowed between given states?
	Slide 81: Is function call allowed in present state?
	Slide 82: How to react on incorrect state transition
	Slide 83: SimpleSign – additional functionality
	Slide 84: Summary
	Slide 85: Summary

