IAoo8: Computational Logic

2. First-Order Logic

Achim Blumensath blumens@fi.muni.cz

Faculty of Informatics, Masaryk University, Brno

Basic Concepts

First-Order Logic

Syntax

- ▶ variables x, y, z, . . .
- terms $x, f(t_0, \ldots, t_n)$
- relations $R(t_0, \ldots, t_n)$ and equality $t_0 = t_1$
- P operators ∧, ∨, ¬, →, ↔
- quantifiers $\exists x \varphi, \forall x \varphi$

Semantics

$$\mathfrak{A} \models \varphi(\bar{a})$$
 $\mathfrak{A} = \langle A, R_0, R_1, \ldots, f_0, f_1, \ldots \rangle$

$$\begin{split} \varphi &:= \forall x \exists y \big[f(y) = x \big], \\ \psi &:= \forall x \forall y \forall z \big[x \leq y \land y \leq z \rightarrow x \leq z \big]. \end{split}$$

Structures

```
• graphs \mathfrak{G} = \langle V, E \rangle

E \subseteq V \times V binary relation
```

Structures

```
• graphs \mathfrak{G} = \langle V, E \rangle

E \subseteq V \times V binary relation
```

• words
$$\mathfrak{W} = \langle W, \leq, (P_a)_a \rangle$$

 $\leq \subseteq W \times W$ linear ordering
 $P_a \subseteq W$ positions with letter a

Structures

- graphs $\mathfrak{G} = \langle V, E \rangle$ $E \subseteq V \times V$ binary relation
- words $\mathfrak{W} = \langle W, \leq, (P_a)_a \rangle$
 - $\leq \subseteq W \times W$ linear ordering
 - $P_a \subseteq W$ positions with letter a
- transition systems $\mathfrak{S} = \langle S, (E_a)_a, (P_i)_i \rangle$
 - $E_a \subseteq V \times V$ binary relation
 - $P_i \subseteq V$ unary relation

Graphs
$$\mathfrak{G} = \langle V, E \rangle, E \subseteq V \times V$$

• 'The graph is undirected.' (i.e., E is symmetric)

Graphs
$$\mathfrak{G} = \langle V, E \rangle, E \subseteq V \times V$$

'The graph is undirected.' (i.e., E is symmetric)

$$\forall x \forall y [E(x,y) \to E(y,x)]$$

Graphs
$$\mathfrak{G} = \langle V, E \rangle, E \subseteq V \times V$$

• 'The graph is undirected.' (i.e., E is symmetric)

$$\forall x \forall y [E(x,y) \to E(y,x)]$$

· 'The graph has no isolated vertices.'

Graphs
$$\mathfrak{G} = \langle V, E \rangle, E \subseteq V \times V$$

• 'The graph is undirected.' (i.e., E is symmetric)

$$\forall x \forall y [E(x,y) \to E(y,x)]$$

• 'The graph has no isolated vertices.'

$$\forall x\exists y[E(x,y)\vee E(y,x)]$$

Graphs
$$\mathfrak{G} = \langle V, E \rangle, E \subseteq V \times V$$

'The graph is undirected.' (i.e., E is symmetric)

$$\forall x \forall y [E(x,y) \to E(y,x)]$$

• 'The graph has no isolated vertices.'

$$\forall x\exists y[E(x,y)\vee E(y,x)]$$

• 'Every vertex has outdegree 1.'

Graphs
$$\mathfrak{G} = \langle V, E \rangle, E \subseteq V \times V$$

'The graph is undirected.' (i.e., E is symmetric)

$$\forall x \forall y [E(x,y) \to E(y,x)]$$

'The graph has no isolated vertices.'

$$\forall x\exists y[E(x,y)\vee E(y,x)]$$

'Every vertex has outdegree 1.'

$$\forall x \exists y [E(x,y) \land \forall z [E(x,z) \rightarrow z = y]]$$

Prenex normal form

$$Q_0 x_0 \cdots Q_n x_n \psi(\bar{x})$$
, ψ quantifier-free

Prenex normal form

$$Q_0 x_0 \cdots Q_n x_n \psi(\bar{x})$$
, ψ quantifier-free

Skolem normal form

Eliminate existential quantifiers:

```
replace \forall \bar{x} \exists y \varphi(\bar{x}, y) by \forall \bar{x} \varphi(\bar{x}, f(\bar{x})) (f new symbol).
```

```
\forall x \exists y \exists z [y > x \land z < x]
```

Prenex normal form

$$Q_0 x_0 \cdots Q_n x_n \psi(\bar{x})$$
, ψ quantifier-free

Skolem normal form

Eliminate existential quantifiers:

```
replace \forall \bar{x} \exists y \varphi(\bar{x}, y) by \forall \bar{x} \varphi(\bar{x}, f(\bar{x})) (f new symbol).
```

$$\forall x \exists y \exists z [y > x \land z < x] \qquad \forall x [f(x) > x \land g(x) < x]$$

Prenex normal form

$$Q_0 x_0 \cdots Q_n x_n \psi(\bar{x})$$
, ψ quantifier-free

Skolem normal form

Eliminate existential quantifiers:

```
replace \forall \bar{x} \exists y \varphi(\bar{x}, y) by \forall \bar{x} \varphi(\bar{x}, f(\bar{x})) (f new symbol).
```

$$\forall x \exists y \exists z [y > x \land z < x] \qquad \forall x [f(x) > x \land g(x) < x]$$

$$\exists x \forall y [y + 1 \neq x]$$

Prenex normal form

$$Q_0 x_0 \cdots Q_n x_n \psi(\bar{x})$$
, ψ quantifier-free

Skolem normal form

Eliminate existential quantifiers:

```
replace \forall \bar{x} \exists y \varphi(\bar{x}, y) by \forall \bar{x} \varphi(\bar{x}, f(\bar{x})) (f new symbol).
```

$$\forall x \exists y \exists z [y > x \land z < x] \qquad \forall x [f(x) > x \land g(x) < x]$$

$$\exists x \forall y [y + 1 \neq x] \qquad \forall y [y + 1 \neq c]$$

Prenex normal form

$$Q_0 x_0 \cdots Q_n x_n \psi(\bar{x})$$
, ψ quantifier-free

Skolem normal form

Eliminate existential quantifiers:

```
replace \forall \bar{x} \exists y \varphi(\bar{x}, y) by \forall \bar{x} \varphi(\bar{x}, f(\bar{x})) (f new symbol).
```

Prenex normal form

$$Q_0 x_0 \cdots Q_n x_n \psi(\bar{x})$$
, ψ quantifier-free

Skolem normal form

Eliminate existential quantifiers:

```
replace \forall \bar{x} \exists y \varphi(\bar{x}, y) by \forall \bar{x} \varphi(\bar{x}, f(\bar{x})) (f new symbol).
```

$$\forall x \exists y \exists z [y > x \land z < x] \qquad \forall x [f(x) > x \land g(x) < x]$$

$$\exists x \forall y [y + 1 \neq x] \qquad \forall y [y + 1 \neq c]$$

$$\exists x \forall y \exists z \forall u \exists v [R(x, y, z, u, v)] \qquad \forall y \forall u [R(c, y, f(y), u, g(y, u))]$$

Prenex normal form

$$Q_0 x_0 \cdots Q_n x_n \psi(\bar{x})$$
, ψ quantifier-free

Skolem normal form

Eliminate existential quantifiers:

```
replace \forall \bar{x} \exists y \varphi(\bar{x}, y) by \forall \bar{x} \varphi(\bar{x}, f(\bar{x})) (f new symbol).
```

Theorem

Let φ_s be a Skolemisation of φ . Then φ_s is satisfiable iff φ is satisfiable.

Theorem of Herbrand

Theorem of Herbrand

A formula $\exists \bar{x} \varphi(\bar{x})$ is valid if, and only if, there are terms $\bar{t}_0, \ldots, \bar{t}_n$ such that the disjunction $\bigvee_{i \leq n} \varphi(\bar{t}_i)$ is valid.

Corollary

A formula $\forall \bar{x} \varphi(\bar{x})$ is unsatisfiable if, and only if, there are terms $\bar{t}_0, \ldots, \bar{t}_n$ such that the conjunction $\bigwedge_{i \leq n} \varphi(\bar{t}_i)$ is unsatisfiable.

Resolution

Substitution

Definition

A **substitution** σ is a function that replaces in a formula every free variable by a term (and renames bound variables if necessary). Instead of $\sigma(\varphi)$ we also write $\varphi[x \mapsto s, y \mapsto t]$ if $\sigma(x) = s$ and $\sigma(y) = t$.

$$(x = f(y))[x \mapsto g(x), y \mapsto c] = g(x) = f(c)$$

$$\exists z(x = z + z)[x \mapsto z] = \exists u(z = u + u)$$

Unification

Definition

A unifier of two terms $s(\bar{x})$ and $t(\bar{x})$ is a pair of substitutions σ , τ such that $\sigma(s) = \tau(t)$.

A unifier σ , τ is **most general** if every other unifier σ' , τ' can be written as $\sigma' = \rho \circ \sigma$ and $\tau' = \upsilon \circ \tau$, for some ρ , υ .

$$s = f(x, g(x)) \qquad t = f(c, x) \qquad x \mapsto c \qquad x \mapsto g(c)$$

$$s = f(x, g(x)) \qquad t = f(x, y) \qquad x \mapsto x \qquad x \mapsto x$$

$$y \mapsto g(x)$$

$$x \mapsto g(x) \qquad x \mapsto g(x)$$

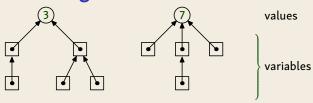
$$y \mapsto g(g(x))$$

$$s = f(x) \qquad t = g(x) \qquad \text{unification not possible}$$

Unification Algorithm

```
unify(s, t)
  if s is a variable x then
     if x already has some value u then
        unify(u, t)
     else
        set x to t
   else if t is a variable x then
     if x already has some value v then
        unify(s, v)
     else
        set x to s
  else s = f(\bar{u}) and t = g(\bar{v})
     if f = q then
        forall i unify(u_i, v_i)
     else
        fail
```

Union-Find-Algorithm



find : variable → value

follows pointers to the root and creates shortcuts

union : $(variable \times variable) \rightarrow unit$

links roots by a pointer

Clauses

Definitions

- ▶ **literal** $R(\bar{t})$ or $\neg R(\bar{t})$
- ▶ clause set of literals $\{P(\bar{s}), R(\bar{t}), \neg S(\bar{u})\}$

Clauses

Definitions

- ▶ literal $R(\bar{t})$ or $\neg R(\bar{t})$
- ► clause set of literals $\{P(\bar{s}), R(\bar{t}), \neg S(\bar{u})\}$

```
CNF  \varphi := \forall x \forall y \big[ R(x,y) \vee \neg R(x,f(x)) \big] \wedge \forall y \big[ \neg R(f(y),y) \vee P(y) \big]  (no existential quantifiers) clauses  \big\{ R(x,y) \, , \, \neg R(x,f(x)) \big\}, \, \big\{ \neg R(f(y),y) \, , \, P(y) \big\}
```

Resolution

Resolution Step

Consider two clauses

$$C = \left\{ P(\bar{s}), R_o(\bar{t}_o), \dots, R_m(\bar{t}_m) \right\}$$

$$C' = \left\{ \neg P(\bar{s}'), S_o(\bar{u}_o), \dots, S_n(\bar{u}_n) \right\}$$

and let σ , τ be the most general unifier of \bar{s} and \bar{s}' . The **resolvent** of C and C' is the clause

$$\left\{R_{o}(\sigma(\bar{t}_{o})),\ldots,R_{m}(\sigma(\bar{t}_{m})),S_{o}(\tau(\bar{u}_{o})),\ldots,S_{n}(\tau(\bar{u}_{n}))\right\}.$$

Lemma

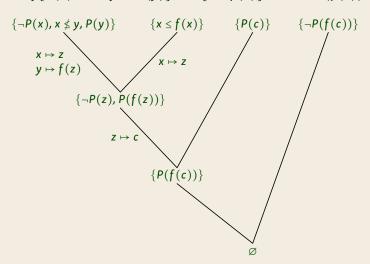
Let C be the resolvent of two clauses in Φ . Then

$$\Phi \models \Phi \cup \{C\}$$
.

$$\varphi = \forall x \forall y [P(x) \land x \le y \to P(y)] \land \forall x [x \le f(x)] \land Pc \land \neg P(f(c))$$

$$\{\neg P(x), x \nleq y, P(y)\} \qquad \{x \le f(x)\} \qquad \{P(c)\} \qquad \{\neg P(f(c))\}$$

$$\varphi = \forall x \forall y \lceil P(x) \land x \leq y \rightarrow P(y) \rceil \land \forall x \lceil x \leq f(x) \rceil \land Pc \land \neg P(f(c))$$



The Resolution Method

Theorem

The resolution method for first-order logic (without equality) is sound and complete.

Theorem

Satisfiability for first-order logic is undecidable.

Satisfiability

Theorem

Satisfiability for first-order logic is undecidable.

Turing machine $\mathcal{M} = \langle Q, \Sigma, \Delta, q_0, F_+, F_- \rangle$, non-deterministic

- Q set of states
- *Σ* tape alphabet
- Δ set of transitions $\langle p, a, b, m, q \rangle$ ∈ $Q \times \Sigma \times \Sigma \times \{-1, 0, 1\} \times Q$
- qo initial state
- F_+ accepting states
- *F*_− rejecting states

By adding a counter to ${\mathcal M}$ we may assume that every run of ${\mathcal M}$ terminates.

Turing machine $\mathcal{M} = \langle Q, \Sigma, \Delta, q_0, F_+, F_- \rangle$, non-deterministic

```
Q set of statesΣ tape alphabet
```

 Δ set of transitions $\langle p, a, b, m, q \rangle \in Q \times \Sigma \times \Sigma \times \{-1, 0, 1\} \times Q$

qo initial state

F₊ accepting states

F_− rejecting states

Encoding in FO

```
S_q(t) state q at time t

h(t) head in field h(t) at time t

W_a(t,k) letter a in field k at time t

s successor function s(n) = n + 1

o zero
```

 $\varphi_{w} := \mathsf{ADM} \wedge \mathsf{INIT} \wedge \mathsf{TRANS} \wedge \mathsf{ACC}$

```
S_q(t) state q at time t

h(t) head in field h(t) at time t

W_a(t,k) letter a in field k at time t

s successor function s(n) = n + 1

o zero
```

Admissibility formula

$$\begin{split} \mathsf{ADM} &\coloneqq \forall t \bigwedge_{p \neq q} \neg \big[\mathsf{S}_p(t) \land \mathsf{S}_q(t) \big] & \text{unique state} \\ & \land \forall t \forall k \bigwedge_{a \neq b} \neg \big[W_a(t,k) \land W_b(t,k) \big] & \text{unique letter} \end{split}$$

```
S_q(t) state q at time t

h(t) head in field h(t) at time t

W_a(t,k) letter a in field k at time t

s successor function s(n) = n + 1
```

Initialisation formula for input: $a_0 \dots a_{n-1}$

$$\begin{split} \mathsf{INIT} &\coloneqq \mathsf{S}_{q_o}(\mathsf{o}) & \mathsf{initial state} \\ & \wedge h(\mathsf{o}) = \mathsf{o} & \mathsf{initial head position} \\ & \wedge \bigwedge_{k < n} W_{a_k}(\mathsf{o}, \underline{k}) \wedge \forall k W_\square(\mathsf{o}, k+n)] & \mathsf{initial tape content} \end{split}$$

(here
$$\underline{k} := s(s(\cdots s(0)))$$
 and $k + n := s^n(k)$)

Acceptance formula

$$ACC := \forall t \bigwedge_{q \in F_{-}} \neg S_{q}(t)$$
 no rejecting states

```
S_q(t) state q at time t

h(t) head in field h(t) at time t

W_a(t, k) letter a in field k at time t

s successor function s(n) = n + 1
```

Transition formula

TRANS :=
$$\forall t \bigvee_{(p,a,b,m,q)\in\Delta} \left[S_p(t) \wedge W_a(t,h(t)) \wedge S_q(s(t)) \wedge h(s(t)) = h(t) + m \wedge W_b(s(t),h(t)) \right]$$

 $\wedge \forall t \forall k \bigwedge_{a \in \Sigma} \left[k \neq h(t) \rightarrow \left[W_a(t,k) \leftrightarrow W_a(s(t),k) \right] \right]$

where

$$y = x + m :=$$

$$\begin{cases} y = s(x) & \text{if } m = 1, \\ y = x & \text{if } m = 0, \\ s(y) = x & \text{if } m = -1. \end{cases}$$

Linear Resolution and Horn Formulae

Horn formulae

A Horn formulae is a formula in CNF where each clause contains at most one positive literal.

Theorem

A set of Horn clauses is unsatisfiable if, and only if, one can use linear resolution to derive the empty clause from it.

SLD Resolution

Linear resolution where the clauses are **sequences** instead of sets and we always resolve the **leftmost literal** of the current clause.