
IA008: Computational Logic

3. Prolog and Databases

Achim Blumensath
blumens@fi.muni.cz

Faculty of Informatics, Masaryk University, Brno

mailto:blumens@fi.muni.cz

Prolog

Prolog
Syntax

A Prolog program consists of a sequence of statements of the form

p(s̄). or p(s̄) ∶ − q0(t̄0), . . . , qn−1(t̄n−1).

p, qi relation symbols, s̄, t̄i tuples of terms.

Semantics

p(s̄) ∶ − q0(t̄0), . . . , qn−1(t̄n−1).

corresponds to the implication

∀x̄[p(s̄)← q0(t̄0) ∧ ⋅ ⋅ ⋅ ∧ qn−1(t̄n−1)]

where x̄ are the variables appearing in the formula.

Example

father_of(peter,sam).
father_of(peter, tina).
mother_of(sara, john).

parent_of(X,Y) ∶ − father_of(X,Y).
parent_of(X,Y) ∶ − mother_of(X,Y).

sibling_of(X,Y) ∶ − parent_of(Z,X),parent_of(Z, Y).

ancestor_of(X,Y) ∶ − father_of(X,Z),ancestor_of(Z, Y).

Interpreter
On input

p0(s̄0), . . . , pn−1(s̄n−1).

the program finds all values for the variables satisfying the
conjunction

p0(s̄0) ∧ ⋅ ⋅ ⋅ ∧ pn−1(s̄n−1) .

Example

?- sibling_of(sam, tina).

Yes

?- sibling_of(X, Y).

X = sam, Y = tina

Execution
Input

• program Π (set of Horn formulae

∀x̄[P(s̄)← Q0(t̄0) ∧ ⋅ ⋅ ⋅ ∧ Qn−1(t̄n−1)])
• goal φ(x̄) ∶= R0(ū0) ∧ ⋅ ⋅ ⋅ ∧ Rm−1(ūm−1)

Evaluation strategy

Use resolution to check for which values of x̄ the union Π∪ {¬φ(x̄)}
is unsatisfiable.

Remark
As we are dealing with a set of Horn formulae, we can use linear
resolution.吀he variant used by Prolog-interpreters is called
SLD-resolution.

SLD-resolution

▸ Current goal: ¬ψ0 ∨ ⋅ ⋅ ⋅ ∨ ¬ψn−1

▸ If n = 0, stop.
▸ Otherwise, find a formula ψ← θ0 ∧ ⋅ ⋅ ⋅ ∧ θm−1 from Π such that

ψ0 and ψ can be unified.

▸ If no such formula exists, backtrack.
▸ Otherwise, resolve them to produce the new goal

τ(¬θ0) ∨ ⋅ ⋅ ⋅ ∨ τ(¬θm−1) ∨ σ(¬ψ1) ∨ ⋅ ⋅ ⋅ ∨ σ(¬ψn−1) .

(σ, τ is the most general unifier of ψ0 and ψ.)

Implementation

Use a stack machine that keeps the current goal on the stack.
(→Warren Abstract Machine)

Example
father_of(peter, sam).

father_of(peter, tina).

mother_of(sara, john).

parent_of(X, Y) :- mother_of(X, Y).

parent_of(X, Y) :- father_of(X, Y).

sibling_of(X, Y) :- parent_of(Z, X), parent_of(Z, Y).

Input sibling_of(tina,sam)

goal ¬sibling_of(tina,sam)

unify with sibling_of(X,Y)← parent_of(Z,X) ∧ parent_of(Z, Y)
unifier X = tina, Y = sam
new goal ¬parent_of(Z, tina), ¬parent_of(Z,sam)

Example
father_of(peter, sam).

father_of(peter, tina).

mother_of(sara, john).

parent_of(X, Y) :- mother_of(X, Y).

parent_of(X, Y) :- father_of(X, Y).

sibling_of(X, Y) :- parent_of(Z, X), parent_of(Z, Y).

Input sibling_of(tina,sam)

goal ¬sibling_of(tina,sam)
unify with sibling_of(X,Y)← parent_of(Z,X) ∧ parent_of(Z, Y)

unifier X = tina, Y = sam
new goal ¬parent_of(Z, tina), ¬parent_of(Z,sam)

Example
father_of(peter, sam).

father_of(peter, tina).

mother_of(sara, john).

parent_of(X, Y) :- mother_of(X, Y).

parent_of(X, Y) :- father_of(X, Y).

sibling_of(X, Y) :- parent_of(Z, X), parent_of(Z, Y).

Input sibling_of(tina,sam)

goal ¬sibling_of(tina,sam)
unify with sibling_of(X,Y)← parent_of(Z,X) ∧ parent_of(Z, Y)
unifier X = tina, Y = sam

new goal ¬parent_of(Z, tina), ¬parent_of(Z,sam)

Example
father_of(peter, sam).

father_of(peter, tina).

mother_of(sara, john).

parent_of(X, Y) :- mother_of(X, Y).

parent_of(X, Y) :- father_of(X, Y).

sibling_of(X, Y) :- parent_of(Z, X), parent_of(Z, Y).

Input sibling_of(tina,sam)

goal ¬sibling_of(tina,sam)
unify with sibling_of(X,Y)← parent_of(Z,X) ∧ parent_of(Z, Y)
unifier X = tina, Y = sam
new goal ¬parent_of(Z, tina), ¬parent_of(Z,sam)

Example
father_of(peter, sam).

father_of(peter, tina).

mother_of(sara, john).

parent_of(X, Y) :- mother_of(X, Y).

parent_of(X, Y) :- father_of(X, Y).

sibling_of(X, Y) :- parent_of(Z, X), parent_of(Z, Y).

Input sibling_of(tina,sam)

goal ¬parent_of(Z, tina), ¬parent_of(Z,sam)

unify with parent_of(X,Y)← mother_of(X,Y)
unifier X = Z, Y = tina
new goal ¬mother_of(Z, tina), ¬parent_of(Z,sam)

Example
father_of(peter, sam).

father_of(peter, tina).

mother_of(sara, john).

parent_of(X, Y) :- mother_of(X, Y).

parent_of(X, Y) :- father_of(X, Y).

sibling_of(X, Y) :- parent_of(Z, X), parent_of(Z, Y).

Input sibling_of(tina,sam)

goal ¬parent_of(Z, tina), ¬parent_of(Z,sam)
unify with parent_of(X,Y)← mother_of(X,Y)

unifier X = Z, Y = tina
new goal ¬mother_of(Z, tina), ¬parent_of(Z,sam)

Example
father_of(peter, sam).

father_of(peter, tina).

mother_of(sara, john).

parent_of(X, Y) :- mother_of(X, Y).

parent_of(X, Y) :- father_of(X, Y).

sibling_of(X, Y) :- parent_of(Z, X), parent_of(Z, Y).

Input sibling_of(tina,sam)

goal ¬parent_of(Z, tina), ¬parent_of(Z,sam)
unify with parent_of(X,Y)← mother_of(X,Y)
unifier X = Z, Y = tina

new goal ¬mother_of(Z, tina), ¬parent_of(Z,sam)

Example
father_of(peter, sam).

father_of(peter, tina).

mother_of(sara, john).

parent_of(X, Y) :- mother_of(X, Y).

parent_of(X, Y) :- father_of(X, Y).

sibling_of(X, Y) :- parent_of(Z, X), parent_of(Z, Y).

Input sibling_of(tina,sam)

goal ¬parent_of(Z, tina), ¬parent_of(Z,sam)
unify with parent_of(X,Y)← mother_of(X,Y)
unifier X = Z, Y = tina
new goal ¬mother_of(Z, tina), ¬parent_of(Z,sam)

Example
father_of(peter, sam).

father_of(peter, tina).

mother_of(sara, john).

parent_of(X, Y) :- mother_of(X, Y).

parent_of(X, Y) :- father_of(X, Y).

sibling_of(X, Y) :- parent_of(Z, X), parent_of(Z, Y).

Input sibling_of(tina,sam)

goal ¬mother_of(Z, tina), ¬parent_of(Z,sam)

unify with mother_of(sara, john)
fails

backtrack to ¬parent_of(Z, tina), ¬parent_of(Z,sam)

Example
father_of(peter, sam).

father_of(peter, tina).

mother_of(sara, john).

parent_of(X, Y) :- mother_of(X, Y).

parent_of(X, Y) :- father_of(X, Y).

sibling_of(X, Y) :- parent_of(Z, X), parent_of(Z, Y).

Input sibling_of(tina,sam)

goal ¬mother_of(Z, tina), ¬parent_of(Z,sam)
unify with mother_of(sara, john)

fails

backtrack to ¬parent_of(Z, tina), ¬parent_of(Z,sam)

Example
father_of(peter, sam).

father_of(peter, tina).

mother_of(sara, john).

parent_of(X, Y) :- mother_of(X, Y).

parent_of(X, Y) :- father_of(X, Y).

sibling_of(X, Y) :- parent_of(Z, X), parent_of(Z, Y).

Input sibling_of(tina,sam)

goal ¬mother_of(Z, tina), ¬parent_of(Z,sam)
unify with mother_of(sara, john)
fails

backtrack to ¬parent_of(Z, tina), ¬parent_of(Z,sam)

Example
father_of(peter, sam).

father_of(peter, tina).

mother_of(sara, john).

parent_of(X, Y) :- mother_of(X, Y).

parent_of(X, Y) :- father_of(X, Y).

sibling_of(X, Y) :- parent_of(Z, X), parent_of(Z, Y).

Input sibling_of(tina,sam)

goal ¬mother_of(Z, tina), ¬parent_of(Z,sam)
unify with mother_of(sara, john)
fails

backtrack to ¬parent_of(Z, tina), ¬parent_of(Z,sam)

Example
father_of(peter, sam).

father_of(peter, tina).

mother_of(sara, john).

parent_of(X, Y) :- mother_of(X, Y).

parent_of(X, Y) :- father_of(X, Y).

sibling_of(X, Y) :- parent_of(Z, X), parent_of(Z, Y).

Input sibling_of(tina,sam)

goal ¬parent_of(Z, tina), ¬parent_of(Z,sam)

unify with parent_of(X,Y)← father_of(X,Y)
unifier X = Z, Y = tina
new goal ¬father_of(Z, tina), ¬parent_of(Z,sam)

Example
father_of(peter, sam).

father_of(peter, tina).

mother_of(sara, john).

parent_of(X, Y) :- mother_of(X, Y).

parent_of(X, Y) :- father_of(X, Y).

sibling_of(X, Y) :- parent_of(Z, X), parent_of(Z, Y).

Input sibling_of(tina,sam)

goal ¬parent_of(Z, tina), ¬parent_of(Z,sam)
unify with parent_of(X,Y)← father_of(X,Y)

unifier X = Z, Y = tina
new goal ¬father_of(Z, tina), ¬parent_of(Z,sam)

Example
father_of(peter, sam).

father_of(peter, tina).

mother_of(sara, john).

parent_of(X, Y) :- mother_of(X, Y).

parent_of(X, Y) :- father_of(X, Y).

sibling_of(X, Y) :- parent_of(Z, X), parent_of(Z, Y).

Input sibling_of(tina,sam)

goal ¬parent_of(Z, tina), ¬parent_of(Z,sam)
unify with parent_of(X,Y)← father_of(X,Y)
unifier X = Z, Y = tina

new goal ¬father_of(Z, tina), ¬parent_of(Z,sam)

Example
father_of(peter, sam).

father_of(peter, tina).

mother_of(sara, john).

parent_of(X, Y) :- mother_of(X, Y).

parent_of(X, Y) :- father_of(X, Y).

sibling_of(X, Y) :- parent_of(Z, X), parent_of(Z, Y).

Input sibling_of(tina,sam)

goal ¬parent_of(Z, tina), ¬parent_of(Z,sam)
unify with parent_of(X,Y)← father_of(X,Y)
unifier X = Z, Y = tina
new goal ¬father_of(Z, tina), ¬parent_of(Z,sam)

Example
father_of(peter, sam).

father_of(peter, tina).

mother_of(sara, john).

parent_of(X, Y) :- mother_of(X, Y).

parent_of(X, Y) :- father_of(X, Y).

sibling_of(X, Y) :- parent_of(Z, X), parent_of(Z, Y).

Input sibling_of(tina,sam)

goal ¬father_of(Z, tina), ¬parent_of(Z,sam)

unify with father_of(peter,sam)
fails

unify with father_of(peter, tina)
unifier Z = peter
new goal ¬parent_of(peter,sam)

Example
father_of(peter, sam).

father_of(peter, tina).

mother_of(sara, john).

parent_of(X, Y) :- mother_of(X, Y).

parent_of(X, Y) :- father_of(X, Y).

sibling_of(X, Y) :- parent_of(Z, X), parent_of(Z, Y).

Input sibling_of(tina,sam)

goal ¬father_of(Z, tina), ¬parent_of(Z,sam)
unify with father_of(peter,sam)

fails

unify with father_of(peter, tina)
unifier Z = peter
new goal ¬parent_of(peter,sam)

Example
father_of(peter, sam).

father_of(peter, tina).

mother_of(sara, john).

parent_of(X, Y) :- mother_of(X, Y).

parent_of(X, Y) :- father_of(X, Y).

sibling_of(X, Y) :- parent_of(Z, X), parent_of(Z, Y).

Input sibling_of(tina,sam)

goal ¬father_of(Z, tina), ¬parent_of(Z,sam)
unify with father_of(peter,sam)
fails

unify with father_of(peter, tina)
unifier Z = peter
new goal ¬parent_of(peter,sam)

Example
father_of(peter, sam).

father_of(peter, tina).

mother_of(sara, john).

parent_of(X, Y) :- mother_of(X, Y).

parent_of(X, Y) :- father_of(X, Y).

sibling_of(X, Y) :- parent_of(Z, X), parent_of(Z, Y).

Input sibling_of(tina,sam)

goal ¬father_of(Z, tina), ¬parent_of(Z,sam)
unify with father_of(peter,sam)
fails

unify with father_of(peter, tina)

unifier Z = peter
new goal ¬parent_of(peter,sam)

Example
father_of(peter, sam).

father_of(peter, tina).

mother_of(sara, john).

parent_of(X, Y) :- mother_of(X, Y).

parent_of(X, Y) :- father_of(X, Y).

sibling_of(X, Y) :- parent_of(Z, X), parent_of(Z, Y).

Input sibling_of(tina,sam)

goal ¬father_of(Z, tina), ¬parent_of(Z,sam)
unify with father_of(peter,sam)
fails

unify with father_of(peter, tina)
unifier Z = peter

new goal ¬parent_of(peter,sam)

Example
father_of(peter, sam).

father_of(peter, tina).

mother_of(sara, john).

parent_of(X, Y) :- mother_of(X, Y).

parent_of(X, Y) :- father_of(X, Y).

sibling_of(X, Y) :- parent_of(Z, X), parent_of(Z, Y).

Input sibling_of(tina,sam)

goal ¬father_of(Z, tina), ¬parent_of(Z,sam)
unify with father_of(peter,sam)
fails

unify with father_of(peter, tina)
unifier Z = peter
new goal ¬parent_of(peter,sam)

Example
father_of(peter, sam).

father_of(peter, tina).

mother_of(sara, john).

parent_of(X, Y) :- mother_of(X, Y).

parent_of(X, Y) :- father_of(X, Y).

sibling_of(X, Y) :- parent_of(Z, X), parent_of(Z, Y).

Input sibling_of(tina,sam)

goal ¬parent_of(peter,sam)

.

goal ¬father_of(peter,sam)
unify with father_of(peter,sam)
new goal empty

Example
father_of(peter, sam).

father_of(peter, tina).

mother_of(sara, john).

parent_of(X, Y) :- mother_of(X, Y).

parent_of(X, Y) :- father_of(X, Y).

sibling_of(X, Y) :- parent_of(Z, X), parent_of(Z, Y).

Input sibling_of(tina,sam)

goal ¬parent_of(peter,sam)
.

goal ¬father_of(peter,sam)

unify with father_of(peter,sam)
new goal empty

Example
father_of(peter, sam).

father_of(peter, tina).

mother_of(sara, john).

parent_of(X, Y) :- mother_of(X, Y).

parent_of(X, Y) :- father_of(X, Y).

sibling_of(X, Y) :- parent_of(Z, X), parent_of(Z, Y).

Input sibling_of(tina,sam)

goal ¬parent_of(peter,sam)
.

goal ¬father_of(peter,sam)
unify with father_of(peter,sam)

new goal empty

Example
father_of(peter, sam).

father_of(peter, tina).

mother_of(sara, john).

parent_of(X, Y) :- mother_of(X, Y).

parent_of(X, Y) :- father_of(X, Y).

sibling_of(X, Y) :- parent_of(Z, X), parent_of(Z, Y).

Input sibling_of(tina,sam)

goal ¬parent_of(peter,sam)
.

goal ¬father_of(peter,sam)
unify with father_of(peter,sam)
new goal empty

Search tree

sibling_of(tina,sam)

parent_of(Z, tina),parent_of(Z,sam)

mother_of(Z, tina),parent_of(Z,sam) father_of(Z, tina),parent_of(Z,sam)

fail parent_of(peter,sam)

mother_of(peter,sam) father_of(peter,sam)

fail success

Caveats
Prolog-interpreters use a simpler (and unsound) form of unification
that ignores multiple occurrences of variables. E.g. they happily
unify p(x, f(x))with p(f(y), f(y)) (equating x = f(y) for the first x
and x = y for the second one).

It is also easy to get infinite loops if you are not careful with the
ordering of the rules:

edge(c,d).

path(X,Y) :- path(X,Z),edge(Z,Y).

path(X,Y) :- edge(X,Y).

produces

?- path(X,Y).

path(X,Z), edge(Z,Y).

path(X,U), edge(U,Z), edge(Z,Y).

path(X,V), edge(V,U), edge(U,Z), edge(Z,Y).

...

Caveats
Prolog-interpreters use a simpler (and unsound) form of unification
that ignores multiple occurrences of variables. E.g. they happily
unify p(x, f(x))with p(f(y), f(y)) (equating x = f(y) for the first x
and x = y for the second one).
It is also easy to get infinite loops if you are not careful with the
ordering of the rules:

edge(c,d).

path(X,Y) :- path(X,Z),edge(Z,Y).

path(X,Y) :- edge(X,Y).

produces

?- path(X,Y).

path(X,Z), edge(Z,Y).

path(X,U), edge(U,Z), edge(Z,Y).

path(X,V), edge(V,U), edge(U,Z), edge(Z,Y).

...

Example: List processing

append([], L, L).

append([H|T], L, [H|R]) :- append(T, L, R).

?- append([a,b], [c,d], X).

X = [a,b,c,d]

?- append(X, Y, [a,b,c,d])

X = [], Y = [a,b,c,d]

X = [a], Y = [b,c,d]

X = [a,b], Y = [c,d]

X = [a,b,c], Y = [d]

X = [a,b,c,d], Y = []

Example: List processing

reverse(Xs, Ys) :- reverse_(Xs, [], Ys).

reverse_([], Ys, Ys).

reverse_([X|Xs], Rs, Ys) :- reverse_(Xs, [X|Rs], Ys).

reverse([a,b,c], X)

reverse_([a,b,c], [], X)

reverse_([b,c], [a], X)

reverse_([c], [b,a], X)

reverse_([], [c,b,a], X)

X = [c,b,a]

Example: Natural language recognition

sentence(X,R) :- noun(X, Y), verb(Y, R).

sentence(X,R) :- noun(X, Y), verb(Y, Z), noun(Z, R).

noun_phrase(X, R) :- noun(X, R).

noun_phrase(['a' | X], R) :- noun(X, R).

noun_phrase(['the' | X], R) :- noun(X, R).

noun(['cat' | R], R).

noun(['mouse' | R], R).

noun(['dog' | R], R).

verb(['eats' | R], R).

verb(['hunts' | R], R).

verb(['plays' | R], R).

Cuts
Control backtracking using cuts:

p ∶ − q0, q1, !, q2, q3.

When backtracking across a cut !, directly jump to the head of the
rule and assume it fails. Do not try other rules.

Example

s← p

s← t

p← q1, q2, !, q3, q4

p← r

r

q1

q2

q3

s

p t

q1, q2, !, q3, q4 r fail

q2, !, q3, q4 success

!, q3, q4

q4

fail

Negation
Problem

If we allow negation, the formulae are no longer Horn and
SLD-resolution does no longer work.

Possible Solutions

▸ ClosedWorld Assumption
If we cannot derive p, it is false (Negation as Failure).

▸ Completed Database
p← q0, . . . , p← qn is interpreted as the stronger statement
p↔ q0 ∨ ⋅ ⋅ ⋅ ∨ qn.

Examples

Being connected by a path of non-edges:

q(X,X).

q(X,Y) :- q(X,Z), not(p(Z,Y)).

Implementing negation using cuts:

not(A) :- A, !, fail.

not(A).

Some cuts can be implemented using negation:

p :- a, !, b. p :- a, b.

p :- c. p :- not(a), c.

Databases

Databases
Definition

A database is a set of relations called tables.

Example

flight from to price

LH8302 Prague Frankfurt 240
OA1472 Vienna Warsaw 300
UA0870 London Washington 800
…

Formal Definitions
We treat a database as a structureA = ⟨A,R0, . . . , Rn⟩with
▸ universe A containing all entries and
▸ one relation Ri ⊆ A× ⋅ ⋅ ⋅ × A per table.

吀he active domain of a database is the set of elements appearing in
some relation.

Example

In the previous table, the active domain contains:

LH8302, OA1472, UA0870, 240, 300, 800,
Prague, Frankfurt, Vienna, Warsaw, London, Washington

Queries

A query is a function mapping each database to a relation.

Example

Input: database of direct flights
Output: table of all flight connections possibly including stops

In Prolog: database flight, query connection.

flight('LH8302', 'Prague', 'Frankfurt', 240).

flight('OA1472', 'Vienna', 'Warsaw', 300).

flight('UA0870', 'London', 'Washington', 800).

connection(From, To) :- flight(X, From, To, Y).

connection(From, To) :-

flight(X, From, T, Y), connection(T, To).

Relational Algebra
Syntax

▸ basic relations
▸ boolean operations ∩, ∪, ∖, All
▸ cartesian product ×
▸ selection σij

▸ projection πu0...un−1

Examples

▸ π1,0(R) = { (b, a) ∣ (a, b) ∈ R}
▸ π0,3(σ1,2(E × E)) = { (a, c) ∣ (a, b),(b, c) ∈ E}

Join

R&ij S ∶= σij(R× S)

Relational Algebra
Syntax

▸ basic relations
▸ boolean operations ∩, ∪, ∖, All
▸ cartesian product ×
▸ selection σij

▸ projection πu0...un−1

Examples

▸ π1,0(R) = { (b, a) ∣ (a, b) ∈ R}
▸ π0,3(σ1,2(E × E)) = { (a, c) ∣ (a, b),(b, c) ∈ E}

Join

R&ij S ∶= σij(R× S)

Expressive Power
吀heorem
Relational Algebra = First-Order Logic

Proof
(≤) s↦ s∗ such that s = { ā ∣ A ⊧ s∗(ā) }

R∗ ∶= R(x0, . . . , xn−1)
(s∩ t)∗ ∶= s∗ ∧ t∗

(s∪ t)∗ ∶= s∗ ∨ t∗

(s∖ t)∗ ∶= s∗ ∧ ¬t∗

All∗ ∶= true
(s× t)∗ ∶= s∗(x0, . . . , xm−1) ∧ t∗(xm, . . . , xm+n−1)
σij(s)∗ ∶= s∗ ∧ xi = xj

πu0,...,un−1(s)∗ ∶= ∃ȳ[s∗(ȳ) ∧⋀
i<n

xi = yui
]

Expressive Power
吀heorem
Relational Algebra = First-Order Logic
Proof
(≤) s↦ s∗ such that s = { ā ∣ A ⊧ s∗(ā) }

R∗ ∶= R(x0, . . . , xn−1)
(s∩ t)∗ ∶= s∗ ∧ t∗

(s∪ t)∗ ∶= s∗ ∨ t∗

(s∖ t)∗ ∶= s∗ ∧ ¬t∗

All∗ ∶= true
(s× t)∗ ∶= s∗(x0, . . . , xm−1) ∧ t∗(xm, . . . , xm+n−1)
σij(s)∗ ∶= s∗ ∧ xi = xj

πu0,...,un−1(s)∗ ∶= ∃ȳ[s∗(ȳ) ∧⋀
i<n

xi = yui
]

Expressive Power
吀heorem
Relational Algebra = First-Order Logic
Proof
(≤) s↦ s∗ such that s = { ā ∣ A ⊧ s∗(ā) }

R∗ ∶= R(x0, . . . , xn−1)
(s∩ t)∗ ∶= s∗ ∧ t∗

(s∪ t)∗ ∶= s∗ ∨ t∗

(s∖ t)∗ ∶= s∗ ∧ ¬t∗

All∗ ∶= true
(s× t)∗ ∶= s∗(x0, . . . , xm−1) ∧ t∗(xm, . . . , xm+n−1)
σij(s)∗ ∶= s∗ ∧ xi = xj

πu0,...,un−1(s)∗ ∶= ∃ȳ[s∗(ȳ) ∧⋀
i<n

xi = yui
]

Expressive Power
吀heorem
Relational Algebra = First-Order Logic
Proof
(≥) φ↦ φ∗ such that φ∗ = { ā ∣ A ⊧ φ(ā) }

R(xu0 , . . . , xun−1)∗ ∶= π0,...,m−1(σu0,m+0⋯σun−1,m+n−1

(All × ⋅ ⋅ ⋅ × All × R))
(xi = xj)∗ ∶= σij(All × ⋅ ⋅ ⋅ × All)
(φ∧ ψ)∗ ∶= φ∗ ∩ ψ∗

(φ∨ ψ)∗ ∶= φ∗ ∪ ψ∗

(¬φ)∗ ∶= All × ⋅ ⋅ ⋅ × All ∖ φ∗

(∃xiφ)∗ ∶= π0,...,i−1,n,i+1,...,n−1(φ∗ × All)

Expressive Power
吀heorem
Relational Algebra = First-Order Logic
Proof
(≥) φ↦ φ∗ such that φ∗ = { ā ∣ A ⊧ φ(ā) }

R(xu0 , . . . , xun−1)∗ ∶= π0,...,m−1(σu0,m+0⋯σun−1,m+n−1

(All × ⋅ ⋅ ⋅ × All × R))
(xi = xj)∗ ∶= σij(All × ⋅ ⋅ ⋅ × All)
(φ∧ ψ)∗ ∶= φ∗ ∩ ψ∗

(φ∨ ψ)∗ ∶= φ∗ ∪ ψ∗

(¬φ)∗ ∶= All × ⋅ ⋅ ⋅ × All ∖ φ∗

(∃xiφ)∗ ∶= π0,...,i−1,n,i+1,...,n−1(φ∗ × All)

Query Evaluation
Conjunctive query

φ(x̄) = ∃ȳ[R0(z̄0) ∧ ⋅ ⋅ ⋅ ∧ Rn−1(z̄n−1)] for z̄0, . . . , z̄n−1 ⊆ x̄ȳ

Relational Algebra

πū[R0 × ⋅ ⋅ ⋅ × Rn−1]

Query Optimisation

πū[R0 &ij ⋅ ⋅ ⋅ &kl Rn−1] (works if φ is ‘tree-shaped’)

Query Evaluation
Conjunctive query

φ(x̄) = ∃ȳ[R0(z̄0) ∧ ⋅ ⋅ ⋅ ∧ Rn−1(z̄n−1)] for z̄0, . . . , z̄n−1 ⊆ x̄ȳ

Relational Algebra

πū[R0 × ⋅ ⋅ ⋅ × Rn−1]

Query Optimisation

πū[R0 &ij ⋅ ⋅ ⋅ &kl Rn−1] (works if φ is ‘tree-shaped’)

Query Evaluation
Conjunctive query

φ(x̄) = ∃ȳ[R0(z̄0) ∧ ⋅ ⋅ ⋅ ∧ Rn−1(z̄n−1)] for z̄0, . . . , z̄n−1 ⊆ x̄ȳ

Relational Algebra

πū[R0 × ⋅ ⋅ ⋅ × Rn−1]

Query Optimisation

πū[R0 &ij ⋅ ⋅ ⋅ &kl Rn−1] (works if φ is ‘tree-shaped’)

Constraint Satisfaction Problem (CSP)

Given structuresA,B, does there exists a homomorphismA→B?

Constraint Satisfaction Problem (CSP)

Given structuresA,B, does there exists a homomorphismA→B?

Examples

• 3-Colourability

• Sodoku ⟨9 × 9,≠⟩ → ⟨9,≠⟩

Constraint Satisfaction Problem (CSP)

Given structuresA,B, does there exists a homomorphismA→B?

Example

φ(x) = ∃y∃z[E(x, y) ∧ E(x, z) ∧ R(x, y, z)]

A

B

x

y

z

E
E

R

Constraint Satisfaction Problem (CSP)

Given structuresA,B, does there exists a homomorphismA→B?

Example

φ(x) = ∃y∃z[E(x, y) ∧ E(x, z) ∧ R(x, y, z)]

A

B

x

y

z

E
E

R

Complexity

In general the problem is NP-complete, but there are subclasses
where it is in P.

Datalog

Datalog
Simplified version of Prolog developped in database theory:

▸ no function symbols,
▸ no cut, no negation, etc.

A datalog program for a databaseA = ⟨A,R0, . . . , Rn⟩ is a set of
Horn formulae

p0(X̄)← q0,0(X̄, Ȳ) ∧ ⋅ ⋅ ⋅ ∧ q0,m0(X̄, Ȳ)
⋮

pn(X̄)← qn,0(X̄, Ȳ) ∧ ⋅ ⋅ ⋅ ∧ qn,mn(X̄, Ȳ)

where p0, . . . , pn are new relation symbols and the qij are either
relation symbols fromA, possibly negated, or one of the new
symbols pk (not negated).

Datalog queries
吀he query defined by a datalog program

p0(X̄)← q0,0(X̄, Ȳ) ∧ ⋅ ⋅ ⋅ ∧ q0,m0(X̄, Ȳ)
⋮

pn(X̄)← qn,0(X̄, Ȳ) ∧ ⋅ ⋅ ⋅ ∧ qn,mn(X̄, Ȳ)

maps a databaseA to the relations p0, . . . , pn defined by these
formulae.

Evaluation strategy

▸ Start with empty relations p0 = ∅, . . . , pn = ∅.
▸ Apply each rule to add new tuples to the relations.
▸ Repeat until no new tuples are generated.

Note
吀he relations computed in this way satisfy the Completed Database
assumption.

Example

path(X,Y)← edge(X,Y)
path(X,Y)← path(X,Z) ∧ path(Z, Y)

A stage 0

Example

path(X,Y)← edge(X,Y)
path(X,Y)← path(X,Z) ∧ path(Z, Y)

A stage 1

Example

path(X,Y)← edge(X,Y)
path(X,Y)← path(X,Z) ∧ path(Z, Y)

A stage 2

Example

path(X,Y)← edge(X,Y)
path(X,Y)← path(X,Z) ∧ path(Z, Y)

A stage 3

Example: Arithmetic

Add(x, y, z)← y = 0 ∧ x = z
Add(x, y, z)← E(y′, y) ∧ E(z′, z) ∧ Add(x, y′, z′)
Mul(x, y, z)← y = 0 ∧ z = 0
Mul(x, y, z)← E(y′, y) ∧ Add(x, z′, z) ∧Mul(x, y′, z′)

stage 0 ∅

Example: Arithmetic

Add(x, y, z)← y = 0 ∧ x = z
Add(x, y, z)← E(y′, y) ∧ E(z′, z) ∧ Add(x, y′, z′)
Mul(x, y, z)← y = 0 ∧ z = 0
Mul(x, y, z)← E(y′, y) ∧ Add(x, z′, z) ∧Mul(x, y′, z′)

stage 0 ∅
stage 1 (k,0, k)

Example: Arithmetic

Add(x, y, z)← y = 0 ∧ x = z
Add(x, y, z)← E(y′, y) ∧ E(z′, z) ∧ Add(x, y′, z′)
Mul(x, y, z)← y = 0 ∧ z = 0
Mul(x, y, z)← E(y′, y) ∧ Add(x, z′, z) ∧Mul(x, y′, z′)

stage 0 ∅
stage 1 (k,0, k)
stage 2 (k,0, k), (k, 1, k+ 1)

Example: Arithmetic

Add(x, y, z)← y = 0 ∧ x = z
Add(x, y, z)← E(y′, y) ∧ E(z′, z) ∧ Add(x, y′, z′)
Mul(x, y, z)← y = 0 ∧ z = 0
Mul(x, y, z)← E(y′, y) ∧ Add(x, z′, z) ∧Mul(x, y′, z′)

stage 0 ∅
stage 1 (k,0, k)
stage 2 (k,0, k), (k, 1, k+ 1)
stage 3 (k,0, k), (k, 1, k+ 1), (k,2, k+ 2)

Example: Arithmetic

Add(x, y, z)← y = 0 ∧ x = z
Add(x, y, z)← E(y′, y) ∧ E(z′, z) ∧ Add(x, y′, z′)
Mul(x, y, z)← y = 0 ∧ z = 0
Mul(x, y, z)← E(y′, y) ∧ Add(x, z′, z) ∧Mul(x, y′, z′)

stage 0 ∅
stage 1 (k,0, k)
stage 2 (k,0, k), (k, 1, k+ 1)
stage 3 (k,0, k), (k, 1, k+ 1), (k,2, k+ 2)

⋯
stage n (k,0, k), (k, 1, k+ 1),…, (k, n− 1, k+ n− 1)

⋯

Complexity
吀heorem

For databasesA = ⟨A, R̄,≤⟩ equipped with a linear order ≤, a query Q
can be expressed as a Datalog program if, and only if, it can be
evaluated in polynomial type.

