IA008: Computational Logic 4. Deduction

Achim Blumensath

blumens@fi.muni.cz

Faculty of Informatics, Masaryk University, Brno

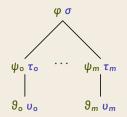
Tableaux

Tableau Proofs

For simplicity: first-order logic without equality

Statements φ true or φ false

Rule



Interpretation

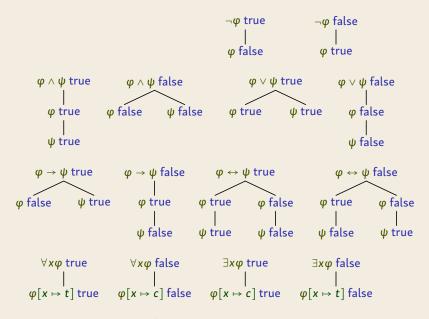
If $\varphi \sigma$ is **possible** then so is $\psi_i \tau_i, \ldots, \vartheta_i \upsilon_i$, for some *i*.

Tableaux

Construction

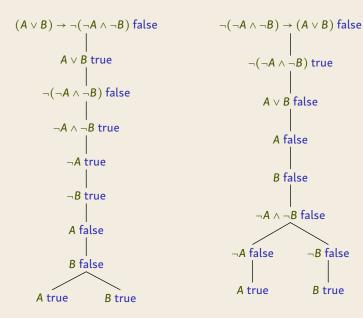
A **tableau** for a formula φ is constructed as follows:

- start with φ false
- choose a branch of the tree
- choose a statement ψ value on the branch
- choose a rule with head ψ value
- add it at the bottom of the branch
- repeat until every branch contains both statements ψ true and ψ false for some formula ψ



c a new constant symbol, t an arbitrary term

 $(A \lor B) \to \neg(\neg A \land \neg B)$ false $\neg(\neg A \land \neg B) \to (A \lor B)$ false



 $\exists x \forall y R(x, y) \rightarrow \forall y \exists x R(x, y)$ false

$\forall x R(x, x) \rightarrow \forall x \exists y R(f(x), y)$ false

```
\exists x \forall y R(x, y) \rightarrow \forall y \exists x R(x, y) false
             \exists x \forall y R(x, y) true
             \forall y \exists x R(x, y) false
               \forall y R(c, y) true
               \exists x R(x, d) false
                  R(c, d) true
                 R(c, d) false
```

 $\forall x R(x, x) \rightarrow \forall x \exists y R(f(x), y)$ false $\forall x R(x, x)$ true $\forall x \exists y R(f(x), y)$ false $\exists y R(f(c), y)$ false R(f(c), f(c)) false R(f(c), f(c)) true

Soundness and Completeness

Theorem

A first-order formula φ (without equality) is valid (over non-empty structures) if, and only if, there exists a tableau T for φ false where every branch is contradictory.

Soundness and Completeness

Theorem

A first-order formula φ (without equality) is valid (over non-empty structures) if, and only if, there exists a tableau T for φ false where every branch is contradictory.

Terminology

A tableau **for** a statement φ value is a tableau *T* where the root is labelled with φ value.

A branch β is **contradictory** if it contains both statements ψ true and ψ false, for some formula ψ .

A branch β is **consistent with** a structure \mathfrak{A} if

- $\mathfrak{A} \models \psi$, for all statements ψ true on β and
- $\mathfrak{A} \neq \psi$, for all statements ψ false on θ .

A branch β is **complete** if, for every atomic formula ψ , it contains one of the statements ψ true or ψ false.

Proof Sketch: Soundness

Lemma

If β is consistent with \mathfrak{A} and we extend the tableau by applying a rule, the new tableau has a branch β' extending β that is consistent with \mathfrak{A} .

Corollary

If $\mathfrak{A} \not\models \varphi$, then every tableau for φ false has a branch that is not contradictory.

Corollary

If φ is not valid, there is no tableau for φ false where all branches are contradictory.

Proof Sketch: Completeness

Lemma

If every tableau for φ false has a non-contradictory branch, there exists a tableau for φ false with a branch β that is complete and non-contradictory.

Lemma

If a branch β is complete and non-contradictory, there exists a structure \mathfrak{A} such that β is consistent with \mathfrak{A} .

Corollary

If every tableau for φ false has a non-contradictory branch, there exists a structure \mathfrak{A} with $\mathfrak{A} \neq \varphi$.

Natural Deduction

Notation

 $\psi_1, \ldots, \psi_n \vdash \varphi \quad \varphi \text{ is provable with assumptions } \psi_1, \ldots, \psi_n$

Notation

 $\psi_1, \ldots, \psi_n \vdash \varphi \quad \varphi \text{ is provable with assumptions } \psi_1, \ldots, \psi_n$ $\varphi \text{ is provable if } \vdash \varphi.$

Notation

 $\psi_1, \ldots, \psi_n \vdash \varphi \quad \varphi \text{ is provable with assumptions } \psi_1, \ldots, \psi_n$ $\varphi \text{ is provable if } \vdash \varphi.$

Rules

$$\frac{\Gamma_1 \vdash \varphi_1 \dots \Gamma_n \vdash \varphi_n}{\Delta \vdash \psi} \quad \begin{array}{c} \text{premises} \\ \text{conclusion} \end{array} \quad \varphi_1 \land \dots \land \varphi_n \Rightarrow \psi$$

Notation

 $\psi_1, \ldots, \psi_n \vdash \varphi \quad \varphi \text{ is provable with assumptions } \psi_1, \ldots, \psi_n$ $\varphi \text{ is provable if } \vdash \varphi.$

Rules

$$\frac{\Gamma_1 \vdash \varphi_1 \dots \Gamma_n \vdash \varphi_n}{\Delta \vdash \psi} \quad \begin{array}{c} \text{premises} \\ \text{conclusion} \end{array} \quad \varphi_1 \land \dots \land \varphi_n \Rightarrow \psi$$

Axiom

$$\frac{1}{\Delta \vdash \psi}$$
 rule without premises

Notation

 $\psi_1, \ldots, \psi_n \vdash \varphi \quad \varphi \text{ is provable with assumptions } \psi_1, \ldots, \psi_n$ $\varphi \text{ is provable if } \vdash \varphi.$

Rules

 $\frac{\Gamma_{1} \vdash \varphi_{1} \dots \Gamma_{n} \vdash \varphi_{n}}{\Delta \vdash \psi} \quad \begin{array}{c} \text{premises} \\ \text{conclusion} \end{array} \quad \varphi_{1} \land \dots \land \varphi_{n} \Rightarrow \psi$

Axiom

Remark

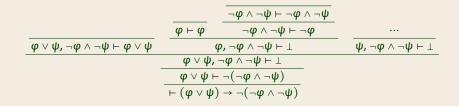
Tableaux speak about **possibilities** while Natural Deduction proofs speak about **necesseties**.

Derivation

$$\frac{\boxed{\Gamma \vdash \varphi} \quad \boxed{\Delta_{o} \vdash \psi_{o}}}{\Delta_{1} \vdash \psi_{1}} \quad \boxed{\Gamma' \vdash \varphi'}{\Sigma \vdash \vartheta} \quad \text{tree of rules}$$

Natural Deduction (propositional part)

$$\vdash (\varphi \lor \psi) \to \neg (\neg \varphi \land \neg \psi)$$



Natural Deduction (quantifiers and equality)

c a new constant symbol, s, t arbitrary terms

 $s = t \vdash t = s$

$$s = t \vdash t = s$$
 $\frac{s = t \vdash s = t}{s = t \vdash t = s}$ $(E_{=})$

$$s = t \vdash t = s$$
 $\frac{s = t \vdash s = t}{s = t \vdash t = s}$ $(E_{=})$

$$s = t, t = u \vdash s = u$$

$$s = t \vdash t = s$$
 $\frac{s = t \vdash s = t}{s = t \vdash t = s}$ $(E_{=})$

$$s = t, t = u \vdash s = u \qquad \frac{t = u \vdash t = u \qquad s = t \vdash s = t}{s = t, t = u \vdash s = u} \quad (E_{=})$$

$$s = t \vdash t = s$$
 $\frac{s = t \vdash s = t}{s = t \vdash t = s}$ $(E_{=})$

$$s = t, t = u \vdash s = u \qquad \frac{t = u \vdash t = u \qquad s = t \vdash s = t}{s = t, t = u \vdash s = u} \quad (E_{=})$$

 $\exists x \forall y R(x, y) \vdash \forall y \exists x R(x, y)$

$$s = t \vdash t = s$$
 $\frac{s = t \vdash s = t}{s = t \vdash t = s}$ $(E_{=})$

$$s = t, t = u \vdash s = u \qquad \frac{t = u \vdash t = u \qquad s = t \vdash s = t}{s = t, t = u \vdash s = u} \quad (E_{=})$$

$$\frac{\exists x \forall y R(x, y) \vdash \forall y \exists x R(x, y)}{\exists x \forall y R(x, y) \vdash \exists x \forall y R(x, y)} \qquad \frac{\forall y R(c, y) \vdash \forall y R(c, y)}{\forall y R(c, y) \vdash R(c, d)} \qquad (E_{\forall})$$

$$\frac{\exists x \forall y R(x, y) \vdash \exists x \forall y R(x, y)}{\exists x \forall y R(x, y) \vdash \forall y \exists x R(x, y)} \qquad (E_{\exists})$$

Soundness and Completeness

Theorem

A formula φ is provable using Natural Deduction if, and only if, it is valid (over non-empty structures).

Corollary

Validity of first-order formulae is **recursively enumerable**, but **not decidable**.

Isabelle/HOL

Isabelle/HOL

Proof assistant designed for software verification.

General structure

```
theory T
imports T1 ... Tn
begin
    declarations, definitions, and proofs
end
```

Syntax

Two levels:

- the meta-language (Isabelle) used to define theories,
- the logical language (HOL) used to write formulae.

To distinguish the levels, one encloses formulae of the logical language in quotes.

Logical Language

Types

- base types: bool, nat, int,...
- type constructors: α list, α set,...
- function types: $\alpha \Rightarrow \beta$
- type variables: 'a, 'b,...

Terms

- application: f x y, x + y,...
- abstraction: λx.t
- type annoation: t :: α
- if b then t else u
- let x = t in u

• case x of $p_o \Rightarrow t_o \mid \cdots \mid p_n \Rightarrow t_n$

Formulae

- terms of type bool
- boolean operations
 ¬, ∧, ∨, →
- quantifiers $\forall x, \exists x$
- predicates ==, <,...</p>

Basic Types

```
datatype bool = True | False
fun conj :: "bool => bool => bool" where
"conj True True = True"
"conj _ _ = False"
datatype nat = 0 | Suc nat
fun add :: "nat => nat => nat" where
"add 0 n = n"
"add (Suc m) n = Suc (add m n)"
lemma add 02: "add m 0 = m"
apply (induction m)
apply (auto)
done
```

lemma add_02: "add m 0 = m"

lemma add_02: "add m 0 = m"

apply (induction m)

lemma add_02: "add m 0 = m"

apply (induction m)
1. add 0 0 = 0
2. \m. add m 0 = m ==> add (Suc m) 0 = Suc m

```
lemma add_02: "add m 0 = m"
apply (induction m)
1. add 0 0 = 0
2. \mathcal{m}. add m 0 = m ==> add (Suc m) 0 = Suc m
apply (auto)
```

```
apply(induction xs)
```

apply(induction xs)

```
1. rev (rev Nil) = Nil
```

```
2. \langle x1 xs. rev (rev xs) = xs ==>
rev (rev (Cons x1 xs)) = Cons x1 xs
```

```
apply(induction xs)
1. rev (rev Nil) = Nil
2. \lambda x1 xs. rev (rev xs) = xs ==>
    rev (rev (Cons x1 xs)) = Cons x1 xs
apply(auto)
```

```
theorem rev_rev [simp]: "rev (rev xs) = xs"
apply(induction xs)
1. rev (rev Nil) = Nil
2. \Ar1 xs. rev (rev xs) = xs ==>
  rev (rev (Cons x1 xs)) = Cons x1 xs
apply(auto)
1. \Ar1 xs.
  rev (rev xs) = xs ==>
  rev (rev xs @ Cons x1 Nil) = Cons x1 xs
```

```
lemma app_Nil2 [simp]: "xs @ Nil = xs"
apply(induction xs)
apply(auto)
done
```

```
lemma app_Nil2 [simp]: "xs @ Nil = xs"
apply(induction xs)
apply(auto)
done
lemma rev_app [simp]: "rev (xs @ ys) = rev ys @ rev xs"
apply(induction xs)
apply(auto)
1. ∧x1 xs.
  rev (xs @ ys) = rev ys @ rev xs ==>
  (rev ys @ rev xs) @ Cons x1 Nil =
  rev ys @ (rev xs @ Cons x1 Nil)
```

```
lemma app_Nil2 [simp]: "xs @ Nil = xs"
apply(induction xs)
apply(auto)
done
lemma rev_app [simp]: "rev (xs @ ys) = rev ys @ rev xs"
apply(induction xs)
apply(auto)
1. ∧x1 xs.
  rev (xs @ ys) = rev ys @ rev xs ==>
  (rev ys @ rev xs) @ Cons x1 Nil =
  rev ys @ (rev xs @ Cons x1 Nil)
lemma app_assoc [simp]: "(xs @ ys) @ zs = xs @ (ys @ zs)"
apply (induction xs)
apply (auto)
done
```

```
lemma app_Nil2 [simp]: "xs @ [] = xs"
apply(induction xs)
apply(auto)
done
lemma app_assoc [simp]: "(xs @ ys) @ zs = xs @ (ys @ zs)"
apply(induction xs)
apply(auto)
done
lemma rev_app [simp]: "rev(xs @ ys) = (rev ys) @ (rev xs)"
apply(induction xs)
apply(auto)
done
```

```
theorem rev_rev [simp]: "rev(rev xs) = xs"
apply(induction xs)
apply(auto)
done
```

end

Nonmonotonic Logic

Negation as Failure

Goal

Develop a proof calculus supporting Negation as Failure as used in Prolog.

Monotonicity

Ordinary deduction is **monotone**: if we add new assumption, all consequences we have already derived remain. More information does not invalidate already made deductions.

Non-Monotonicity

Negation as Failure is **non-monotone**:

P implies $\neg Q$ but *P*, *Q* does not imply $\neg Q$.

Default Logic

Rule

$$\frac{\alpha_{o} \dots \alpha_{m} : \beta_{o} \dots \beta_{n}}{\gamma} \qquad \begin{array}{c} \alpha_{i} \quad \text{assumptions} \\ \beta_{i} \quad \text{restraints} \\ \gamma \quad \text{consequence} \end{array}$$

Derive γ provided that we can derive $\alpha_0, \ldots, \alpha_m$, but none of β_0, \ldots, β_n .

Example

bird(x):penguin(x) ostrich(x) can_fly(x)

Semantics

Definition

A set Φ of formulae is **consistent** with respect to a set of rules *R* if, for every rule

$$\frac{\alpha_{o} \ldots \alpha_{m} : \beta_{o} \ldots \beta_{n}}{\gamma} \in R$$

such that $\alpha_0, \ldots, \alpha_m \in \Phi$ and $\beta_0, \ldots, \beta_n \notin \Phi$, we have $\gamma \in \Phi$.

Note

If there are no restraints β_i , consistent sets are closed under intersection.

 \Rightarrow There is a unique smallest such set, that of all **provable** formulae.

If there are restraints, this may not be the case. Formulae that belong to all consistent sets are called **secured consequences**.

Examples

The system

$$\frac{\alpha : \beta}{\beta}$$

has a unique consistent set $\{\alpha, \beta\}$.

The system

$$\frac{\alpha}{\alpha} = \frac{\alpha : \beta}{\gamma} = \frac{\alpha : \gamma}{\beta}$$

has consistent sets

 $\{\alpha, \beta\}, \{\alpha, \gamma\}, \{\alpha, \beta, \gamma\}.$