Exercise 1 Consider the following formulae.

(a)
$$(A \leftrightarrow B) \rightarrow (\neg A \land C)$$

(b)
$$(A \rightarrow B) \rightarrow C$$

(c)
$$A \leftrightarrow B$$

(d)
$$(A \rightarrow B) \leftrightarrow (A \rightarrow C)$$

(e)
$$(A \wedge B) \vee (A \wedge C)$$

(f)
$$[A \rightarrow (B \lor \neg A)] \rightarrow (B \rightarrow A)$$

(g)
$$[(A \lor B) \to (C \to A)] \leftrightarrow (A \lor B \lor C)$$

For each of them

(1) use a truth table to determine if the formula is valid and/or satisfiable;

(2) convert the formula into CNF using the truth table;

(3) convert the formula into CNF using equivalence transformations instead;

(4) write the formula as a set of clauses.

Exercise 2 Which of the following formulae imply each other?

(a) $A \wedge B$

(b) $A \vee B$

(c) $A \rightarrow B$

(d) $A \leftrightarrow B$

(e) $\neg A \land \neg B$

(f) $\neg A$

(g) $\neg (A \rightarrow B)$

Exercise 3 Encode the following problems as a satisfiability problem for propositional logic:

(a) the independent set problem: given a graph $\mathfrak G$ and a number k, does the graph contain k vertices which are pairwise not connected by an edge to each other?

(b) the domino tiling problem: given a finite set D of square *dominoes*, two relations H, $V \subseteq D \times D$ specifying which pairs of dominoes can be put horizontally/vertically next to each other, and a number n, does there exist a tiling of the $n \times n$ grid, i.e., a function $\tau : n \times n \to D$ such that

$$(\tau(i,j), \tau(i+1,j)) \in H$$
 and $(\tau(i,j), \tau(i,j+1)) \in V$, for all i, j ?

1

Exercise 4 We can encode *n*-bit numbers via an *n*-tuple of propositional variables A_{n-1}, \ldots, A_0 .

- (a) Write a formula $\varphi(A_1, A_0, B_1, B_0, C_2, C_1, C_0)$ for the addition of 2-bit numbers (A + B = C).
- (b) Write a formula $\varphi(A_{n-1}, \ldots, A_0, B_{n-1}, \ldots, B_0, C_n, \ldots, C_0)$ for the addition of n-bit numbers.

Exercise 5 Use the DPLL algorithm to determine whether the following formulae are satisfiable.

(a)
$$\neg [(A \rightarrow B) \leftrightarrow (A \rightarrow C)]$$

(b)
$$(A \lor B \lor C) \land (B \lor D) \land (A \to D) \land (B \to A)$$

(c)
$$(A \leftrightarrow B) \rightarrow (\neg A \land C)$$

(d)
$$[A \rightarrow (B \lor \neg A)] \rightarrow (B \rightarrow A)$$

(e)
$$[(A \lor B) \to (C \to A)] \leftrightarrow (A \lor B \lor C)$$

Exercise 6 Use the resolution method to determine which of the following formulae are valid.

(a)
$$(A \land \neg B \land C) \lor (\neg A \land \neg B \land \neg C) \lor (B \land C) \lor (A \land \neg C) \lor (\neg A \land B \land \neg C) \lor (\neg A \land \neg B \land C)$$

(b)
$$(A \wedge B) \vee (B \wedge C \wedge D) \vee (\neg A \wedge B) \vee (\neg C \wedge \neg D)$$

(c)
$$(\neg A \land B \land \neg C) \lor (\neg B \land \neg C \land D) \lor (\neg C \land \neg D) \lor (A \land B) \lor (\neg A \land B \land C) \lor (\neg A \land C) \lor (A \land \neg B \land C) \lor (A \land \neg B \land D)$$

Exercise 7 Construct the game for the following set of Horn-formulae and determine the winning regions.

$$B \wedge C \wedge D \rightarrow A$$
 $C \wedge F \rightarrow B$ $A \wedge F \rightarrow C$ $D \rightarrow B$ $A \wedge B \rightarrow F$ $E \rightarrow A$ $D \wedge E \rightarrow B$ C D

Exercise 8 (optional) Given a finite automaton \mathcal{A} and an input word w, write down a formula $\varphi_{\mathcal{A}, w}$ that is satisfiable if, and only if, the automaton \mathcal{A} accepts w.