Exercise � Show that the following formulae are valid using tableau proofs. (a) ψ → ((φ∧ ψ) ∨ ψ) (b) ((φ∧ ψ) ∨ ψ) → ψ (c) φ → ∃xφ (d) ∀xφ → φ (e) ∀x(φ∧ ψ) → ∀xφ∧ ∀xψ (f) ∃x(φ∨ ψ) → (∃xφ∨ ∃xψ) (g) φ∧ ψ → ψ ∧ φ (h) (¬ψ → ¬φ) → (φ → ψ) (i) φ → ¬¬φ (j) (φ → ψ) ∧ (φ → ϑ) → (φ → ψ ∧ ϑ) (k) (φ → ψ ∧ ϑ) → (φ → ψ) ∧ (φ → ϑ) (l) ¬¬φ → φ (m) φ∨ ¬φ (n) ¬(¬φ∧ ¬ψ) → (φ∨ ψ) (o) ∀xR(x,x) → ∀x∃yR(f(x),y) (p) (∃xφ∨ ∃xψ) → ∃x(φ∨ ψ) (q) ∀xφ∧ ∀xψ → ∀x(φ∧ ψ) (r) ∀x∀y[φ(x) ↔ φ(y)] ∧ ∃xφ(x) → ∀xφ(x) Exercise � Prove that the formulae from Exercise � are valid using Natural Deduction. Exercise � Find all consistent sets for the following sets of rules. (a) α α β δ α γ δ (b) α α βγ β (c) α α β γ α γ β � Exercise � For each of the following subsets Φ ⊆ ℘({α,β}), find a set of rules R such that Φ is the set of all consistent sets for R. (a) {∅, {α}, {α,β}} (b) {{α}, {β}, {α,β}} (c) {∅, {α,β}} (d) {{α}, {α,β}} Exercise � (optional) Derive the following additional rules from the basic ones of the Natural Deduction calculus (that is, combine the basic rules to obtain the ones below). Γ ⊢ ¬¬φ Γ ⊢ φ Γ ⊢ φ Γ,Δ ⊢ φ Γ,¬φ ⊢ ¬ψ Γ ⊢ ψ → φ �