Classical Satisfiability Algorithms

IA085: Satisfiability and Automated Reasoning

Martin Jonáš

FI MUNI, Spring 2025

- basic logical notions (entailment, equivalence, satisfiability, ...)
- applications of satisfiability,
- conversion of a formula to equisatisfiable CNF of linear size

Today, we assume that all formulas are in CNF.

An algorithm that can decide satisfiability of formulas with thousands of variables and millions of clauses.

Exhaustive search

```
1 ExhaustiveSearch(formula \Phi) {

2 foreach truth assignment \mu to Atoms(\Phi)

3 res \leftarrow evaluate \phi under \mu

4 if res == \top

5 return SAT

6 return UNSAT

7 }
```

Exhaustive search in practice

- virtually never used in practice
- for unsatisfiable instances always needs $2^{|Atoms(\varphi)|}$ steps
- for satisfiable instances can easily need exponential number of steps

Exhaustive search in practice

- virtually never used in practice
- \cdot for unsatisfiable instances always needs $2^{|Atoms(\varphi)|}$ steps
- for satisfiable instances can easily need exponential number of steps

Just buy a big powerful GPU?

- $\cdot\,$ atoms on Earth $\sim 10^{50} \sim$ number of truth assignments to 166 variables
- $\cdot\,$ atoms in the universe $\sim 10^{80} \sim$ number of truth assignments to 266 variables

Propositional resolution

Rule for deriving new clauses from existing ones

$$\frac{\{A, l_1, \dots, l_n\} \quad \{\neg A, l'_1, \dots, l'_m\}}{\{l_1, \dots, l_n, l'_1, \dots, l'_m\}}$$

In general form

$$\frac{A \vee \varphi \quad \neg A \vee \psi}{\varphi \vee \psi}$$

Notation and terminology

- $Resolve(x, C_1, C_2)$ returns the resulting formula
- $Resolve(x, C_1, C_2)$ is called resolvent of C_1 and C_2 on x

Correctness

$$C_1 \wedge C_2 \models Resolve(x, C_1, C_2)$$

$$\frac{A \quad \neg A \lor B}{B}$$

$$\frac{A \quad \neg A \lor B}{B} = \frac{A \quad A \to B}{B} = \text{modus ponens}$$

Resolution rule: notable instances

Resolution rule: notable instances

$$\frac{A \quad \neg A \lor B}{B} = \frac{A \quad A \to B}{B} = \text{modus ponens}$$

$$\frac{\neg B \quad \neg A \lor B}{\neg A} = \frac{\neg B \quad A \to B}{\neg A} = \text{modus tollens}$$

$$\frac{\neg A \lor B \quad \neg B \lor C}{\neg A \lor C}$$

Observations

- \cdot if $C_1, C_2 \in \Phi$ and R is a resolvent of C_1 and C_2 , then $\Phi \models R$
- therefore $\Phi \equiv \Phi \cup \{R\}$

Observations

- \cdot if $C_1, C_2 \in \Phi$ and R is a resolvent of C_1 and C_2 , then $\Phi \models R$
- therefore $\Phi \equiv \Phi \cup \{R\}$

Resolution method

- $\cdot\,$ extend Φ with all possible resolvents of clauses from Φ
- + if $\emptyset \in \Phi$ at some point, return UNSAT
- $\cdot\,$ if no more clauses can be derived and $\emptyset\not\in\Phi,$ return SAT

 $\{ \{A, B\}, \\ \{\neg B, C\}, \\ \{\neg B, \neg C\}, \\ \{\neg A, \neg B, \neg D\}, \\ \{\neg A, B, \neg D\}, \\ \{\neg A, B, D\}$

 $\{ \{A, B\}, \\ \{\neg B, C\}, \\ \{\neg B, \neg C\}, \\ \{\neg A, \neg B, \neg D\}, \\ \{\neg A, B, \neg D\}, \\ \{\neg A, B, D\}$

 $\{ \{A, B\}, \\ \{\neg B, C\}, \\ \{\neg B, \neg C\}, \\ \{\neg A, \neg B, \neg D\}, \\ \{\neg A, B, \neg D\}, \\ \{\neg A, B, D\}, \\ \{\neg B\},$

$$\begin{split} & \{ \{A, B\}, \\ & \{ \neg B, C\}, \\ & \{ \neg B, \neg C\}, \\ & \{ \neg A, \neg B, \neg D\}, \\ & \{ \neg A, B, \neg D\}, \\ & \{ \neg A, B, D\}, \\ & \{ \neg B\}, \end{split}$$

 $\{\{A, B\},\$ $\{\neg B, C\},\$ $\{\neg B, \neg C\},\$ $\{\neg A, \neg B, \neg D\},\$ $\{\neg A, B, \neg D\},\$ $\{\neg A, B, D\}$ $\{\neg B\},\$ $\{A\},\$

 $\{\{A, B\},\$ $\{\neg B, C\},\$ $\{\neg B, \neg C\},\$ $\{\neg A, \neg B, \neg D\},\$ $\{\neg A, B, \neg D\},\$ $\{\neg A, B, D\}$ $\{\neg B\},\$ $\{A\},\$

 $\{\{A, B\},\$ $\{\neg B, C\},\$ $\{\neg B, \neg C\},\$ $\{\neg A, \neg B, \neg D\},\$ $\{\neg A, B, \neg D\},\$ $\{\neg A, B, D\}$ $\{\neg B\},\$ $\{A\},\$ $\{\neg A, B\},\$

 $\{\{A, B\},\$ $\{\neg B, C\},\$ $\{\neg B, \neg C\},\$ $\{\neg A, \neg B, \neg D\},\$ $\{\neg A, B, \neg D\},\$ $\{\neg A, B, D\}$ $\{\neg B\},\$ $\{A\},\$ $\{\neg A, B\},\$

 $\{\{A, B\},\$ $\{\neg B, C\},\$ $\{\neg B, \neg C\},\$ $\{\neg A, \neg B, \neg D\},\$ $\{\neg A, B, \neg D\},\$ $\{\neg A, B, D\}$ $\{\neg B\},\$ $\{A\},\$ $\{\neg A, B\},\$ $\{B\},\$

 $\{\{A, B\},\$ $\{\neg B, C\},\$ $\{\neg B, \neg C\},\$ $\{\neg A, \neg B, \neg D\},\$ $\{\neg A, B, \neg D\},\$ $\{\neg A, B, D\}$ $\{\neg B\},\$ $\{A\},\$ $\{\neg A, B\},\$ $\{B\},\$

 $\{\{A, B\},\$ $\{\neg B, C\},\$ $\{\neg B, \neg C\},\$ $\{\neg A, \neg B, \neg D\},\$ $\{\neg A, B, \neg D\},\$ $\{\neg A, B, D\}$ $\{\neg B\},\$ $\{A\},\$ $\{\neg A, B\},\$ $\{B\},\$ ∅ }

Theorem (Soundness)

If the resolution method returns UNSAT, the formula Φ is unsatisfiable.

Theorem (Completeness) If the formula is unsatisfiable, the resolution method returns UNSAT.

Resolution method is not used in practice

- $\cdot\,$ the size of Φ never decreases
- \cdot the size of Φ grows quickly (often exponentially)
- \cdot as presented, the algorithm is not deterministic

Davis-Putnam algorithm

Davis-Putnam algorithm (1960)

- eagerly apply simple resolution cases first unit resolution (unit propagation)
- fix an order of variables in which to resolve
- for a variable *x*, use resolution on all clauses that can be resolved on *x* at once and remove the original clauses

Variable assignment

 $\cdot\,$ for example

$$\Big\{\{A,B\},\{C,\neg D\},\{\neg A,D\}\Big\}\Big|_{A} \ = \ \{\{C,\neg D\},\{D\}\}$$

•
$$\Phi|_v = \{C \setminus \{\neg v\} \mid C \in \Phi \text{ and } v \notin C\}$$

 \cdot similarly for $\Phi|_{\neg v}$

Unit propagation

- if Φ contains a unit clause $(\{l\} \in \Phi)$, we can directly assign its value
- \cdot for example

 $\{\{A, \neg B\}, \{B\}, \{B, C\}, \{C, \neg D, A\}\} \ \rightsquigarrow \ \{\{A\}, \{C, \neg D, A\}\}$

Davis-Putnam algorithm: Variable elimination

- divide $\Phi = \Psi \cup \Psi_x \cup \Psi_{\neg x}$ where clauses in Ψ do not contain x, clauses in Ψ_x contain x positively, and $\Psi_{\neg x}$ contain x negatively
- $Eliminate Var(x, \Phi) = \Psi \cup \{Resolve(x, C_1, C_2) \mid C_1 \in \Psi_x, C_2 \in \Psi_{\neg x}\}$ without tautological clauses

$$\Phi = \{\{A, B\}, \{\neg B, C\}, \{\neg B, \neg C\}, \{\neg A, \neg B, \neg D\}, \{\neg A, B, \neg D\}, \{\neg A, B, D\}\}$$

$$\begin{aligned} Eliminate Var(A, \Phi) &= \{\{\neg B, C\}, \{\neg B, \neg C\}, \\ \{B, \neg B, \neg D\}, \\ \{B, \neg D\}, \\ \{B, D\} \}\end{aligned}$$

Davis-Putnam algorithm: Variable elimination

- divide $\Phi = \Psi \cup \Psi_x \cup \Psi_{\neg x}$ where clauses in Ψ do not contain x, clauses in Ψ_x contain x positively, and $\Psi_{\neg x}$ contain x negatively
- $Eliminate Var(x, \Phi) = \Psi \cup \{Resolve(x, C_1, C_2) \mid C_1 \in \Psi_x, C_2 \in \Psi_{\neg x}\}$ without tautological clauses

$$\Phi = \{\{A, B\}, \{\neg B, C\}, \{\neg B, \neg C\}, \{\neg A, \neg B, \neg D\}, \{\neg A, B, \neg D\}, \{\neg A, B, D\}\}$$

$$\begin{aligned} \exists liminate Var(A, \Phi) &= \{\{\neg B, C\}, \{\neg B, \neg C\},\\ \{B, \neg B, \neg D\},\\ \{B, \neg D\},\\ \{B, D\}\}\end{aligned}$$

```
DP(formula \Phi):
 1
           while \Phi contains unit clause \{l\}:
                 \Phi \leftarrow \Phi
 3
 4
           if \Phi = \emptyset return SAT
 5
           if \emptyset \in \Phi return UNSAT
 6
 7
           v \leftarrow PickVariable(\Phi)
8
           \Phi \leftarrow \mathsf{EliminateVar}(v, \Phi)
9
           return DP(\Phi)
10
```

Theorem (Soundness) If DP(Φ) returns UNSAT, the formula Φ is unsatisfiable.

Theorem (Completeness) If the formula Φ is unsatisfiable, DPLL(Φ) returns UNSAT.

Proof idea.

Invariant: at every step, the formula Φ is equisatisfiable with the original.

- Unit propagation is satisfiability preserving.
- Variable elimination is satisfiability preserving.
Theorem (Soundness) If DP(Φ) returns UNSAT, the formula Φ is unsatisfiable.

Theorem (Completeness) If the formula Φ is unsatisfiable, DPLL(Φ) returns UNSAT.

Proof idea.

Invariant: at every step, the formula Φ is equisatisfiable with the original.

- Unit propagation is satisfiability preserving.
- Variable elimination is satisfiability preserving.

Corollary (Complexity)

Theorem (Soundness) If DP(Φ) returns UNSAT, the formula Φ is unsatisfiable.

Theorem (Completeness) If the formula Φ is unsatisfiable, DPLL(Φ) returns UNSAT.

Proof idea.

Invariant: at every step, the formula Φ is equisatisfiable with the original.

- Unit propagation is satisfiability preserving.
- Variable elimination is satisfiability preserving.

Corollary (Complexity)

Unless P = NP, the procedure DP does not run in polynomial time.

Resolution lower bounds

Pigeonnhole formula PHP_n

- Can n + 1 pigeons be assigned to n boxes such that there is at most one pigeon in one box?
- \cdot variables $x_{i,j}$ pigeon i is in the box j
- for each $1 \le i \le n+1$ a clause $\bigvee_{1 \le j \le n} x_{i,j}$
- + for each 1 $\leq j \leq n$ and 1 $\leq i < i' \leq n + 1$ a clause $\neg x_{i,j} \lor \neg x_{i',j}$
- obviously unsatisfiable

Resolution lower bounds

Pigeonnhole formula PHP_n

- Can n + 1 pigeons be assigned to n boxes such that there is at most one pigeon in one box?
- \cdot variables $x_{i,j}$ pigeon i is in the box j
- for each $1 \le i \le n+1$ a clause $\bigvee_{1 \le j \le n} x_{i,j}$
- + for each 1 $\leq j \leq n$ and 1 $\leq i < i' \leq n + 1$ a clause $\neg x_{i,j} \lor \neg x_{i',j}$
- obviously unsatisfiable

Theorem (Haken, 1985)

Every resolution proof of PHP_n has size $2^{\Omega(n)}$.

Resolution lower bounds

Pigeonnhole formula PHP_n

- Can n + 1 pigeons be assigned to n boxes such that there is at most one pigeon in one box?
- \cdot variables $x_{i,j}$ pigeon i is in the box j
- for each $1 \le i \le n+1$ a clause $\bigvee_{1 \le j \le n} x_{i,j}$
- + for each 1 $\leq j \leq n$ and 1 $\leq i < i' \leq n + 1$ a clause $\neg x_{i,j} \lor \neg x_{i',j}$
- obviously unsatisfiable

Theorem (Haken, 1985) Every resolution proof of PHP_n has size $2^{\Omega(n)}$.

Corollary (Complexity) The procedure DP does not run in polynomial time. Davis-Putnam-Logemann-Loveland algorithm (DPLL)

Davis-Putnam-Logemann-Loveland algorithm (1962)

- replace the resolution step in DP by variable assignment
- assign one value; if UNSAT, backtrack and try the opposite value
- \cdot eagerly apply unit propagation whenever possible

```
DPLL(formula \Phi):
          while \Phi contains unit clause \{l\}:
                \Phi \leftarrow \Phi|_{I}
3
4
          if \Phi = \emptyset return SAT
5
          if \emptyset \in \Phi return UNSAT
6
7
          v \leftarrow PickVariable(\Phi)
8
          if DPLL(\Phi|_v) == SAT:
9
                return SAT
10
          return DPLL(\Phi|_{\neg v})
11
```

$$\{\{A,B\},\{\neg A,B\},\{\neg A,C,\neg B\},\{\neg A,\neg C,\neg B\}\}$$

$$\{\{A, B\}, \{\neg A, B\}, \{\neg A, C, \neg B\}, \{\neg A, \neg C, \neg B\}\}$$

$$\{\{A, B\}, \{\neg A, B\}, \{\neg A, C, \neg B\}, \{\neg A, \neg C, \neg B\} \}$$

$$A$$

$$\{\{B\}, \{C, \neg B\}, \{\neg C, \neg B\}\}$$

$$B$$

$$\{\{C\}, \{\neg C\}\}$$

$$\{\{A, B\}, \{\neg A, B\}, \{\neg A, C, \neg B\}, \{\neg A, \neg C, \neg B\} \}$$

$$A$$

$$\{\{B\}, \{C, \neg B\}, \{\neg C, \neg B\}\}$$

$$B$$

$$\{\{C\}, \{\neg C\}\}$$

$$C$$

$$\{\emptyset\}$$

$$\{\{A, B\}, \{\neg A, B\}, \{\neg A, C, \neg B\}, \{\neg A, \neg C, \neg B\}\}$$

$$A$$

$$\{\{B\}, \{C, \neg B\}, \{\neg C, \neg B\}\}$$

$$B |$$

$$\{\{C\}, \{\neg C\}\}$$

$$C |$$

$$\{\emptyset\}$$

$$UNSAT$$

$$\{\{A, B\}, \{\neg A, B\}, \{\neg A, C, \neg B\}, \{\neg A, \neg C, \neg B\}\}$$

$$\{\{A, B\}, \{\neg A, B\}, \{\neg A, C, \neg B\}, \{\neg A, \neg C, \neg B\} \}$$

$$\{\{A, B\}, \{\neg A, B\}, \{\neg A, C, \neg B\}, \{\neg A, \neg C, \neg B\} \}$$

Theorem (Soundness) If DPLL(Φ) returns SAT, the formula Φ is satisfiable.

Theorem (Completeness) If the formula Φ is satisfiable, DPLL(Φ) returns SAT.

Corollary (Complexity) Unless P = NP, the procedure DPLL does not run in polynomial time.

$\{\{A,B\}_1,\{\neg B,C\}_2,\{\neg B,\neg C\}_3,\{\neg A,\neg B,\neg D\}_4,\{\neg A,B,\neg D\}_5,\{\neg A,B,D\}_6\}$

$\mathsf{UNSAT}\;\mathsf{DPLL}\to\mathsf{Resolution}$

$\mathsf{UNSAT}\;\mathsf{DPLL}\to\mathsf{Resolution}$

$\mathsf{UNSAT}\;\mathsf{DPLL}\to\mathsf{Resolution}$

A run of DPLL with result UNSAT corresponds to a tree resolution proof

- 1. replace all derived \emptyset leaves by the corresponding original input clauses
- 2. to each unit propagation step, add the original clause of the unit clause that triggered the unit propagation
- 3. complete the resolution

Corollary (Time Complexity) DPLL has exponential time complexity (e.g., for PHP formulas).

Theorem (Space Complexity) DPLL has polynomial space complexity.

- $\cdot\,$ DPLL is almost never used in practice
- basis of Conflict-Driven Clause Learning (CDCL) used in most of the modern SAT solvers

Implementing DPLL

Real implementation of DPLL

- the previous theoretical description is not suitable for practical implementation
- \cdot each modification of formula Φ is too expensive
- do not modify the formula, modify the partial assignment instead

Clause status

- $\cdot \,$ contains satisfied literal \rightarrow satisfied
- $\cdot\,$ all literals are assigned opposite values \rightarrow falsified / conflict clause
- one literal is unassigned, other literals are assigned opposite values \rightarrow unit clause
- otherwise undetermined

$(A \lor B) \land (\neg A \lor B) \land (\neg A \lor C \lor \neg B) \land (\neg A \lor \neg C \lor \neg B)$

$$(A \lor B) \land (\neg A \lor B) \land (\neg A \lor C \lor \neg B) \land (\neg A \lor \neg C \lor \neg B)$$

decide A
[A]

Trail

- stack of currently assigned literals
- \cdot trail = [A, \neg C]
- used during backtracking

Map of values

- maps each variable to true/false/unknown
- · value[A] = true, value[B] = unknown, value[C] = false
- used to evaluate clauses

Decision and Backtracking

- do not use recursion for backtracking, manage the stack explicitly (faster and will be useful later)
- \cdot keep list of positions of decision literals that can be reverted if needed
- e.g. for trail = [A, $\neg B$, C, D, $\neg E$], decisions = [0, 2]:
 - literals trail[0] = A and trail[2] = C were decisions
 - other literals were unit propagated or set during backtracking

Desired functionalities

- **Decide**(x,v): sets x to v; can be flipped using backtracking
- Assign(x,v): sets x to v; cannot be flipped using backtracking
- **Backtrack()**: undo all assignments up to the last decision, **Assign** the decided variable to the opposite value
- How to implement?

UnitPropagate()

- detects unit clauses
- keeps a queue of unit assignments that have to be performed
- assigns value to all unit literals until fixed point
- \cdot can detect conflicts

DPLL: Realistic

```
DPLL(formula \Phi):
     InitializeDatastructures()
2
3
     if UnitPropagation() == CONFLICT:
4
          return UNSAT
5
6
     while not all variables are assigned:
          v \leftarrow PickUnassignedVariable()
8
9
          Decide(v, false)
10
          while UnitPropagation() == CONFLICT:
11
              if decisions == []:
12
                   return UNSAT
13
              Backtrack()
14
15
     return SAT
16
```

Unit propagation: naive

Naive unit propagation

- go through the list of clauses
- for each unit clause Assign the unassigned literal and repeat
- $\cdot\,$ found clause that has all literals assigned to $\texttt{false} \rightarrow \texttt{return}\; \texttt{CONFLICT}$

Unit propagation: naive

Naive unit propagation

- \cdot go through the list of clauses
- for each unit clause Assign the unassigned literal and repeat
- \cdot found clause that has all literals assigned to $\texttt{false} \rightarrow \texttt{return}$ CONFLICT

Less naive unit propagation

- all unit propagations (except the first one) occur after variable decision/assignment
- \cdot precompute for each literal **occurs[l]**, the list of clauses that contain *l*
- after decision/assignment of l, only check the clauses in **occurs**[\neg l]

Still not good enough, a variable can occur in a large number of clauses.

Most of the runtime is spent in unit propagation \rightarrow must be as cheap as possible!

Idea

Do not check clauses for which we are sure that contain at least two unassigned literals.

Head-tail lists (SATO solver, 1997)

- for each clause, remember positions of its first and last unassigned literals (head and tail)
- \cdot for each literal, remember list of clauses where it is head and where it is tail
- during unit propagation, only check clauses where the negation of literal is head/tail
- $\cdot\,$ needs to maintain the invariant during backtracking

Head-tail lists (SATO solver, 1997)

- for each clause, remember positions of its first and last unassigned literals (head and tail)
- \cdot for each literal, remember list of clauses where it is head and where it is tail
- during unit propagation, only check clauses where the negation of literal is head/tail
- \cdot needs to maintain the invariant during backtracking

$$\underset{\uparrow}{x} \lor \neg y \lor z \lor \neg v \lor \neg w \lor \overset{\downarrow}{u}$$

Head-tail lists (SATO solver, 1997)

- for each clause, remember positions of its first and last unassigned literals (head and tail)
- \cdot for each literal, remember list of clauses where it is head and where it is tail
- during unit propagation, only check clauses where the negation of literal is head/tail
- \cdot needs to maintain the invariant during backtracking

$$\underset{\uparrow}{x} \lor \neg y \lor z \lor \neg v \lor \neg w \lor \overset{\downarrow}{u}$$

Head-tail lists (SATO solver, 1997)

- for each clause, remember positions of its first and last unassigned literals (head and tail)
- \cdot for each literal, remember list of clauses where it is head and where it is tail
- during unit propagation, only check clauses where the negation of literal is head/tail
- \cdot needs to maintain the invariant during backtracking

$$\underset{\uparrow}{x} \lor \neg y \lor z \lor \neg v \lor \neg w \lor \overset{\downarrow}{u}$$

Head-tail lists (SATO solver, 1997)

- for each clause, remember positions of its first and last unassigned literals (head and tail)
- \cdot for each literal, remember list of clauses where it is head and where it is tail
- during unit propagation, only check clauses where the negation of literal is head/tail
- \cdot needs to maintain the invariant during backtracking

$$\underset{\uparrow}{x} \lor \neg y \lor z \lor \neg v \lor \neg w \lor \overset{\downarrow}{u}$$

Head-tail lists (SATO solver, 1997)

- for each clause, remember positions of its first and last unassigned literals (head and tail)
- \cdot for each literal, remember list of clauses where it is head and where it is tail
- during unit propagation, only check clauses where the negation of literal is head/tail
- \cdot needs to maintain the invariant during backtracking

$$\underset{\uparrow}{x} \lor \neg y \lor z \lor \neg v \lor \neg w \lor \overset{\downarrow}{u}$$

Variable assignment: \boldsymbol{y} , \boldsymbol{v}

Head-tail lists (SATO solver, 1997)

- for each clause, remember positions of its first and last unassigned literals (head and tail)
- \cdot for each literal, remember list of clauses where it is head and where it is tail
- during unit propagation, only check clauses where the negation of literal is head/tail
- \cdot needs to maintain the invariant during backtracking

$$\underset{\uparrow}{x} \lor \neg y \lor z \lor \neg v \lor \neg w \lor \overset{\downarrow}{u}$$

Variable assignment: \boldsymbol{y} , \boldsymbol{v}

Head-tail lists (SATO solver, 1997)

- for each clause, remember positions of its first and last unassigned literals (head and tail)
- \cdot for each literal, remember list of clauses where it is head and where it is tail
- during unit propagation, only check clauses where the negation of literal is head/tail
- \cdot needs to maintain the invariant during backtracking

$$\begin{array}{c} x \lor \neg y \lor z \lor \neg v \lor \neg w \lor \overset{\downarrow}{u} \\ \uparrow \end{array}$$

Variable assignment: y , v , $\neg x$

Head-tail lists (SATO solver, 1997)

- for each clause, remember positions of its first and last unassigned literals (head and tail)
- \cdot for each literal, remember list of clauses where it is head and where it is tail
- during unit propagation, only check clauses where the negation of literal is head/tail
- \cdot needs to maintain the invariant during backtracking

$$x \lor \neg y \lor \underset{\uparrow}{z} \lor \neg v \lor \neg w \lor \overset{\downarrow}{u}$$

Variable assignment: y , v , $\neg x$

Head-tail lists (SATO solver, 1997)

- for each clause, remember positions of its first and last unassigned literals (head and tail)
- \cdot for each literal, remember list of clauses where it is head and where it is tail
- during unit propagation, only check clauses where the negation of literal is head/tail
- \cdot needs to maintain the invariant during backtracking

$$x \lor \neg y \lor \underset{\uparrow}{z} \lor \neg v \lor \neg w \lor \overset{\downarrow}{u}$$

Variable assignment: y , v , $\neg x$, $\neg u$

Head-tail lists (SATO solver, 1997)

- for each clause, remember positions of its first and last unassigned literals (head and tail)
- \cdot for each literal, remember list of clauses where it is head and where it is tail
- during unit propagation, only check clauses where the negation of literal is head/tail
- \cdot needs to maintain the invariant during backtracking

$$x \lor \neg y \lor \underset{\uparrow}{z} \lor \neg v \lor \neg \overset{\downarrow}{w} \lor u$$

Variable assignment: y , v , $\neg x$, $\neg u$

Head-tail lists (SATO solver, 1997)

- for each clause, remember positions of its first and last unassigned literals (head and tail)
- \cdot for each literal, remember list of clauses where it is head and where it is tail
- during unit propagation, only check clauses where the negation of literal is head/tail
- \cdot needs to maintain the invariant during backtracking

$$x \lor \neg y \lor \underset{\uparrow}{z} \lor \neg v \lor \neg \overset{\downarrow}{w} \lor u$$

Variable assignment: y , v , $\neg x$, $\neg u$, w

Head-tail lists (SATO solver, 1997)

- for each clause, remember positions of its first and last unassigned literals (head and tail)
- \cdot for each literal, remember list of clauses where it is head and where it is tail
- during unit propagation, only check clauses where the negation of literal is head/tail
- \cdot needs to maintain the invariant during backtracking

$$x \lor \neg y \lor \underset{\uparrow}{z} \lor \neg v \lor \neg \overset{\downarrow}{w} \lor u$$

Variable assignment: y , v , $\neg x$, $\neg u$, w

Head-tail lists (SATO solver, 1997)

- for each clause, remember positions of its first and last unassigned literals (head and tail)
- \cdot for each literal, remember list of clauses where it is head and where it is tail
- during unit propagation, only check clauses where the negation of literal is head/tail
- \cdot needs to maintain the invariant during backtracking

$$x \lor \neg y \lor \underset{\uparrow}{z} \lor \neg v \lor \neg \overset{\downarrow}{w} \lor u$$

Variable assignment: y , v , $\neg x$, $\neg u$, w

Unit: z

Head-tail lists (SATO solver, 1997)

- for each clause, remember positions of its first and last unassigned literals (head and tail)
- \cdot for each literal, remember list of clauses where it is head and where it is tail
- during unit propagation, only check clauses where the negation of literal is head/tail
- \cdot needs to maintain the invariant during backtracking

$$x \lor \neg y \lor \underset{\uparrow}{z} \lor \neg v \lor \neg \overset{\downarrow}{w} \lor u$$

Variable assignment: y , v , $\neg x$, $\neg u$

Head-tail lists (SATO solver, 1997)

- for each clause, remember positions of its first and last unassigned literals (head and tail)
- \cdot for each literal, remember list of clauses where it is head and where it is tail
- during unit propagation, only check clauses where the negation of literal is head/tail
- \cdot needs to maintain the invariant during backtracking

$$x \lor \neg y \lor \underset{\uparrow}{z} \lor \neg v \lor \neg \overset{\downarrow}{w} \lor u$$

Variable assignment: y , v , $\neg x$, $\neg u$

Head-tail lists (SATO solver, 1997)

- for each clause, remember positions of its first and last unassigned literals (head and tail)
- \cdot for each literal, remember list of clauses where it is head and where it is tail
- during unit propagation, only check clauses where the negation of literal is head/tail
- \cdot needs to maintain the invariant during backtracking

$$x \lor \neg y \lor \underset{\uparrow}{z} \lor \neg v \lor \overset{\downarrow}{\neg w} \lor u$$

Variable assignment: y , v , $\neg x$

Head-tail lists (SATO solver, 1997)

- for each clause, remember positions of its first and last unassigned literals (head and tail)
- \cdot for each literal, remember list of clauses where it is head and where it is tail
- during unit propagation, only check clauses where the negation of literal is head/tail
- \cdot needs to maintain the invariant during backtracking

$$x \lor \neg y \lor \underset{\uparrow}{z} \lor \neg v \lor \neg w \lor \overset{\downarrow}{u}$$

Variable assignment: y , v , $\neg x$

Head-tail lists (SATO solver, 1997)

- for each clause, remember positions of its first and last unassigned literals (head and tail)
- \cdot for each literal, remember list of clauses where it is head and where it is tail
- during unit propagation, only check clauses where the negation of literal is head/tail
- \cdot needs to maintain the invariant during backtracking

$$x \lor \neg y \lor \underset{\uparrow}{z} \lor \neg v \lor \neg w \lor \overset{\downarrow}{u}$$

Variable assignment: \boldsymbol{y} , \boldsymbol{v}

Head-tail lists (SATO solver, 1997)

- for each clause, remember positions of its first and last unassigned literals (head and tail)
- \cdot for each literal, remember list of clauses where it is head and where it is tail
- during unit propagation, only check clauses where the negation of literal is head/tail
- \cdot needs to maintain the invariant during backtracking

$$\underset{\uparrow}{x} \lor \neg y \lor z \lor \neg v \lor \neg w \lor \overset{\downarrow}{u}$$

Variable assignment: \boldsymbol{y} , \boldsymbol{v}

Head-tail lists (SATO solver, 1997)

- for each clause, remember positions of its first and last unassigned literals (head and tail)
- \cdot for each literal, remember list of clauses where it is head and where it is tail
- during unit propagation, only check clauses where the negation of literal is head/tail
- \cdot needs to maintain the invariant during backtracking

$$\underset{\uparrow}{x} \lor \neg y \lor z \lor \neg v \lor \neg w \lor \overset{\downarrow}{u}$$

Head-tail lists (SATO solver, 1997)

- for each clause, remember positions of its first and last unassigned literals (head and tail)
- \cdot for each literal, remember list of clauses where it is head and where it is tail
- during unit propagation, only check clauses where the negation of literal is head/tail
- \cdot needs to maintain the invariant during backtracking

$$\underset{\uparrow}{x} \lor \neg y \lor z \lor \neg v \lor \neg w \lor \overset{\downarrow}{u}$$

Head-tail lists (SATO solver, 1997)

- for each clause, remember positions of its first and last unassigned literals (head and tail)
- \cdot for each literal, remember list of clauses where it is head and where it is tail
- during unit propagation, only check clauses where the negation of literal is head/tail
- \cdot needs to maintain the invariant during backtracking

$$\underset{\uparrow}{x} \lor \neg y \lor z \lor \neg v \lor \neg w \lor \overset{\downarrow}{u}$$

Head-tail lists (SATO solver, 1997)

- for each clause, remember positions of its first and last unassigned literals (head and tail)
- \cdot for each literal, remember list of clauses where it is head and where it is tail
- during unit propagation, only check clauses where the negation of literal is head/tail
- \cdot needs to maintain the invariant during backtracking

$$\underset{\uparrow}{x} \lor \neg y \lor z \lor \neg v \lor \neg w \lor \overset{\downarrow}{u}$$

Head-tail lists (SATO solver, 1997)

- for each clause, remember positions of its first and last unassigned literals (head and tail)
- \cdot for each literal, remember list of clauses where it is head and where it is tail
- during unit propagation, only check clauses where the negation of literal is head/tail
- \cdot needs to maintain the invariant during backtracking

$$\underset{\uparrow}{x} \lor \neg y \lor z \lor \neg v \lor \neg w \lor \overset{\downarrow}{u}$$

Two watched literals (ZCHAFF solver, 2001)

- for each clause, remember positions of its two unassigned literals (watched literals)
- for each literal, remember list of clauses where it is watched
- during unit propagation, only check clauses where the negation of literal is watched
- nothing needs to be done during backtracking!

Two watched literals (ZCHAFF solver, 2001)

- for each clause, remember positions of its two unassigned literals (watched literals)
- \cdot for each literal, remember list of clauses where it is watched
- during unit propagation, only check clauses where the negation of literal is watched
- nothing needs to be done during backtracking!

$$\underset{\uparrow}{x} \vee \overset{\downarrow}{\neg y} \vee z \vee \neg v \vee \neg w \vee u$$

Two watched literals (ZCHAFF solver, 2001)

- for each clause, remember positions of its two unassigned literals (watched literals)
- \cdot for each literal, remember list of clauses where it is watched
- during unit propagation, only check clauses where the negation of literal is watched
- nothing needs to be done during backtracking!

$$\underset{\uparrow}{x} \vee \overset{\downarrow}{\neg y} \vee z \vee \neg v \vee \neg w \vee u$$

Two watched literals (ZCHAFF solver, 2001)

- for each clause, remember positions of its two unassigned literals (watched literals)
- \cdot for each literal, remember list of clauses where it is watched
- during unit propagation, only check clauses where the negation of literal is watched
- nothing needs to be done during backtracking!

$$\underset{\uparrow}{x} \vee \overset{\downarrow}{\neg y} \vee z \vee \neg v \vee \neg w \vee u$$
Two watched literals (ZCHAFF solver, 2001)

- for each clause, remember positions of its two unassigned literals (watched literals)
- \cdot for each literal, remember list of clauses where it is watched
- during unit propagation, only check clauses where the negation of literal is watched
- nothing needs to be done during backtracking!

$$\underset{\uparrow}{x} \lor \neg y \lor \overset{\downarrow}{z} \lor \neg v \lor \neg w \lor u$$

Variable assignment: y

Two watched literals (ZCHAFF solver, 2001)

- for each clause, remember positions of its two unassigned literals (watched literals)
- \cdot for each literal, remember list of clauses where it is watched
- during unit propagation, only check clauses where the negation of literal is watched
- nothing needs to be done during backtracking!

$$\underset{\uparrow}{x} \lor \neg y \lor \overset{\downarrow}{z} \lor \neg v \lor \neg w \lor u$$

Variable assignment: \boldsymbol{y} , \boldsymbol{v}

Two watched literals (ZCHAFF solver, 2001)

- for each clause, remember positions of its two unassigned literals (watched literals)
- \cdot for each literal, remember list of clauses where it is watched
- during unit propagation, only check clauses where the negation of literal is watched
- nothing needs to be done during backtracking!

$$\underset{\uparrow}{x} \lor \neg y \lor \overset{\downarrow}{z} \lor \neg v \lor \neg w \lor u$$

Variable assignment: \boldsymbol{y} , \boldsymbol{v}

Two watched literals (ZCHAFF solver, 2001)

- for each clause, remember positions of its two unassigned literals (watched literals)
- \cdot for each literal, remember list of clauses where it is watched
- during unit propagation, only check clauses where the negation of literal is watched
- nothing needs to be done during backtracking!

$$\underset{\uparrow}{x} \lor \neg y \lor \overset{\downarrow}{z} \lor \neg v \lor \neg w \lor u$$

Variable assignment: y , v , $\neg x$

Two watched literals (ZCHAFF solver, 2001)

- for each clause, remember positions of its two unassigned literals (watched literals)
- \cdot for each literal, remember list of clauses where it is watched
- during unit propagation, only check clauses where the negation of literal is watched
- nothing needs to be done during backtracking!

$$x \lor \neg y \lor \overset{\downarrow}{z} \lor \neg v \lor \neg w \lor u$$

Variable assignment: y , v , $\neg x$

Two watched literals (ZCHAFF solver, 2001)

- for each clause, remember positions of its two unassigned literals (watched literals)
- \cdot for each literal, remember list of clauses where it is watched
- during unit propagation, only check clauses where the negation of literal is watched
- nothing needs to be done during backtracking!

$$x \vee \neg y \vee \overset{\downarrow}{z} \vee \neg v \vee \neg w \vee u$$

Variable assignment: y , v , $\neg x$, $\neg u$

Two watched literals (ZCHAFF solver, 2001)

- for each clause, remember positions of its two unassigned literals (watched literals)
- \cdot for each literal, remember list of clauses where it is watched
- during unit propagation, only check clauses where the negation of literal is watched
- nothing needs to be done during backtracking!

$$x \vee \neg y \vee \overset{\downarrow}{z} \vee \neg v \vee \neg w \vee u \\ \uparrow$$

Variable assignment: y , v , $\neg x$, $\neg u$

Two watched literals (ZCHAFF solver, 2001)

- for each clause, remember positions of its two unassigned literals (watched literals)
- \cdot for each literal, remember list of clauses where it is watched
- during unit propagation, only check clauses where the negation of literal is watched
- nothing needs to be done during backtracking!

$$x \vee \neg y \vee \overset{\downarrow}{z} \vee \neg v \vee \neg w \vee u \\ \uparrow$$

Variable assignment: y , v , $\neg x$, $\neg u$, w

Two watched literals (ZCHAFF solver, 2001)

- for each clause, remember positions of its two unassigned literals (watched literals)
- \cdot for each literal, remember list of clauses where it is watched
- during unit propagation, only check clauses where the negation of literal is watched
- nothing needs to be done during backtracking!

$$x \vee \neg y \vee \overset{\downarrow}{z} \vee \neg v \vee \neg \overset{w}{\uparrow} \vee u$$

Variable assignment: y , v , $\neg x$, $\neg u$, w

Two watched literals (ZCHAFF solver, 2001)

- for each clause, remember positions of its two unassigned literals (watched literals)
- \cdot for each literal, remember list of clauses where it is watched
- during unit propagation, only check clauses where the negation of literal is watched
- nothing needs to be done during backtracking!

$$x \vee \neg y \vee \overset{\downarrow}{z} \vee \neg v \vee \neg \overset{w}{\uparrow} \vee u$$

Variable assignment: y , v , $\neg x$, $\neg u$, w

Unit: z

Two watched literals (ZCHAFF solver, 2001)

- for each clause, remember positions of its two unassigned literals (watched literals)
- \cdot for each literal, remember list of clauses where it is watched
- during unit propagation, only check clauses where the negation of literal is watched
- nothing needs to be done during backtracking!

$$x \lor \neg y \lor \overset{\downarrow}{z} \lor \neg v \lor \neg w \lor u$$

Variable assignment: y , v , $\neg x$, $\neg u$

Two watched literals (ZCHAFF solver, 2001)

- for each clause, remember positions of its two unassigned literals (watched literals)
- \cdot for each literal, remember list of clauses where it is watched
- during unit propagation, only check clauses where the negation of literal is watched
- nothing needs to be done during backtracking!

$$x \vee \neg y \vee \overset{\downarrow}{z} \vee \neg v \vee \neg w \vee u \\ \uparrow$$

Variable assignment: y , v , $\neg x$, $\neg u$

Two watched literals (ZCHAFF solver, 2001)

- for each clause, remember positions of its two unassigned literals (watched literals)
- \cdot for each literal, remember list of clauses where it is watched
- during unit propagation, only check clauses where the negation of literal is watched
- nothing needs to be done during backtracking!

$$x \vee \neg y \vee \overset{\downarrow}{z} \vee \neg v \vee \neg w \vee u \\ \uparrow$$

Variable assignment: y , v , $\neg x$

Two watched literals (ZCHAFF solver, 2001)

- for each clause, remember positions of its two unassigned literals (watched literals)
- \cdot for each literal, remember list of clauses where it is watched
- during unit propagation, only check clauses where the negation of literal is watched
- nothing needs to be done during backtracking!

$$x \lor \neg y \lor \overset{\downarrow}{z} \lor \neg v \lor \neg w \lor u$$

Variable assignment: y , v , $\neg x$

Two watched literals (ZCHAFF solver, 2001)

- for each clause, remember positions of its two unassigned literals (watched literals)
- \cdot for each literal, remember list of clauses where it is watched
- during unit propagation, only check clauses where the negation of literal is watched
- nothing needs to be done during backtracking!

$$x \vee \neg y \vee \overset{\downarrow}{z} \vee \neg v \vee \neg w \vee u$$

Variable assignment: \boldsymbol{y} , \boldsymbol{v}

Two watched literals (ZCHAFF solver, 2001)

- for each clause, remember positions of its two unassigned literals (watched literals)
- \cdot for each literal, remember list of clauses where it is watched
- during unit propagation, only check clauses where the negation of literal is watched
- nothing needs to be done during backtracking!

$$x \vee \neg y \vee \overset{\downarrow}{z} \vee \neg v \vee \neg w \vee u$$

Variable assignment: \boldsymbol{y} , \boldsymbol{v}

Two watched literals (ZCHAFF solver, 2001)

- for each clause, remember positions of its two unassigned literals (watched literals)
- \cdot for each literal, remember list of clauses where it is watched
- during unit propagation, only check clauses where the negation of literal is watched
- nothing needs to be done during backtracking!

$$x \vee \neg y \vee \overset{\downarrow}{z} \vee \neg v \vee \neg w \vee u$$

Variable assignment: y

Two watched literals (ZCHAFF solver, 2001)

- for each clause, remember positions of its two unassigned literals (watched literals)
- \cdot for each literal, remember list of clauses where it is watched
- during unit propagation, only check clauses where the negation of literal is watched
- nothing needs to be done during backtracking!

$$x \vee \neg y \vee \overset{\downarrow}{z} \vee \neg v \vee \neg w \vee u$$

Variable assignment: y

Two watched literals (ZCHAFF solver, 2001)

- for each clause, remember positions of its two unassigned literals (watched literals)
- \cdot for each literal, remember list of clauses where it is watched
- during unit propagation, only check clauses where the negation of literal is watched
- nothing needs to be done during backtracking!

$$x \vee \neg y \vee \overset{\downarrow}{z} \vee \neg v \vee \neg w \vee u$$

Variable assignment:

Two watched literals (ZCHAFF solver, 2001)

- for each clause, remember positions of its two unassigned literals (watched literals)
- \cdot for each literal, remember list of clauses where it is watched
- during unit propagation, only check clauses where the negation of literal is watched
- nothing needs to be done during backtracking!

$$x \vee \neg y \vee \overset{\downarrow}{z} \vee \neg v \vee \neg w \vee u$$

Variable assignment:

Two watched literals (ZCHAFF solver, 2001)

- for each clause, remember positions of its two unassigned literals (watched literals)
- \cdot for each literal, remember list of clauses where it is watched
- during unit propagation, only check clauses where the negation of literal is watched
- nothing needs to be done during backtracking!

$$x \vee \neg y \vee \overset{\downarrow}{z} \vee \neg v \vee \neg w \vee u$$

Variable assignment:

Next time

Conflict-Driven Clause Learning (CDCL)

- DPLL search (unit propagation, backtracking)
- + using resolution to learn new clauses after conflict
- + non-chronological backtracking

Next time

Conflict-Driven Clause Learning (CDCL)

- DPLL search (unit propagation, backtracking)
- + using resolution to learn new clauses after conflict
- + non-chronological backtracking

Modern SAT Solvers

- CDCL
- + two watched literal scheme
- + variable decision heuristics
- + dynamic restarts
- + preprocessing/inprocessing

You can already start implementing your SAT solver

- \cdot input in DIMACS format
- DPLL-like assignment decisions and backtracking
- unit propagation with two watched literal scheme