ID3 Algorithm - Complete Illustration

Consider the dataset \mathcal{D} specified by the following table:

index	X	Y	Z	class
1	1	0	1	Yes
2	1	1	0	Yes
3	1	0	1	Yes
4	1	0	1	Yes
5	0	1	1	No
6	1	0	0	No
7	0	1	0	No
8	0	1	0	No
9	1	1	1	No
10	0	0	1	Yes

There are three attributes $\mathcal{A} = \{X, Y, Z\}$ and two classes $C = \{\text{Yes}, \text{No}\}$. Each attribute has possible values 0 and 1. Let us use indices 1 - 10 to denote elements of the dataset \mathcal{D} . That is, write $\mathcal{D} = \{1, \dots, 10\}$.

Let me demonstrate the execution of the algorithm ID3 with impurity decrease (Gini) to select the best-classifying attributes in every call of ID3.

The algorithm proceeds as follows:

$\mathbf{ID3}(\mathcal{D}, \mathcal{A})$

- At line 2 create the node τ_1 (see Image 1). ¹
- No "if" condition is satisfied, so we continue on line 10. On line 10, identify the best classifying attribute:
 - To compute the impurity decrease, we need to compute $Gini(\mathcal{D})$ for $\mathcal{D} = \{1, \dots, 10\}$ as follows:

 - * $p_{\text{Yes}} = p_{\text{No}} = 1/2$ * $Gini(\mathcal{D}) = 1 p_{\text{Yes}}^2 p_{\text{No}}^2 = 1 (1/2)^2 (1/2)^2 = 0.5$
 - Consider $X \in \mathcal{A}$ and compute $ImpDec(\mathcal{D}, X)$ as follows:
 - * Consider value 1 of X. Then $\mathcal{D}_1 = \{1, 2, 3, 4, 6, 9\}.$

index	X	Y	Z	class
1	1	0	1	Yes
2	1	1	0	Yes
3	1	0	1	Yes
4	1	0	1	Yes
6	1	0	0	No
9	1	1	1	No

 $^{^{1}}$ Note that the nodes of the tree are numbered sequentially so that each node gets a unique index. The indices do not correspond to the indices assigned by the pseudocode.

- . Thus $p_{\mathrm{Yes}} = 4/6$ and $p_{\mathrm{No}} = 2/6$
- · $Gini(\mathcal{D}_1) = 1 p_{Yes}^2 p_{No}^2 = 1 (4/6)^2 (2/6)^2 = 0.444$
- * Consider value 0 of X. Then $\mathcal{D}_0 = \{5, 7, 8, 10\}.$

index	X	Y	Z	class
5	0	1	1	No
7	0	1	0	No
8	0	1	0	No
10	0	0	1	Yes

- · Thus $p_{\mathrm{Yes}} = 1/4$ and $p_{\mathrm{No}} = 3/4$
- · $Gini(\mathcal{D}_0) = 1 p_{Yes}^2 p_{No}^2 = 1 (1/4)^2 (3/4)^2 = 0.375$

$$ImpDec(\mathcal{D}, X) = Gini(\mathcal{D}) - (|\mathcal{D}_1|/|\mathcal{D}|)Gini(\mathcal{D}_1) - (|\mathcal{D}_0|/|\mathcal{D}|)Gini(\mathcal{D}_0)$$

= 0.5 - (6/10) \cdot 0.444 - (4/10) \cdot 0.375 = 0.083

- Consider $Y \in \mathcal{A}$ and compute $ImpDec(\mathcal{D}, Y)$ as follows:
 - * Consider value 1 of Y. Then $\mathcal{D}_1 = \{2, 5, 7, 8, 9\}.$

index	X	Y	\mathbf{Z}	class
2	1	1	0	Yes
5	0	1	1	No
7	0	1	0	No
8	0	1	0	No
9	1	1	1	No

- . Thus $p_{\mathrm{Yes}} = 1/5$ and $p_{\mathrm{No}} = 4/5$
- · $Gini(\mathcal{D}_1) = 1 p_{Yes}^2 p_{No}^2 = 1 (1/5)^2 (4/5)^2 = 0.320$
- * Consider value 0 of Y. Then $\mathcal{D}_0 = \{1, 3, 4, 6, 10\}$.

index	X	Y	Z	class
1	1	0	1	Yes
3	1	0	1	Yes
4	1	0	1	Yes
6	1	0	0	No
10	0	0	1	Yes

- . Thus $p_{\mathrm{Yes}} = 4/5$ and $p_{\mathrm{No}} = 1/5$
- · $Gini(\mathcal{D}_0) = 1 p_{Yes}^2 p_{No}^2 = 1 (4/5)^2 (1/5)^2 = 0.320$

$$ImpDec(\mathcal{D}, Y) = Gini(\mathcal{D}) - (|\mathcal{D}_1|/|\mathcal{D}|)Gini(\mathcal{D}_1) - (|\mathcal{D}_0|/|\mathcal{D}|)Gini(\mathcal{D}_0)$$

= 0.500 - (5/10) \cdot 0.320 - (5/10) \cdot 0.320 = 0.180

- Consider $Z \in \mathcal{A}$ and compute $ImpDec(\mathcal{D}, Z)$ as follows:
 - * Consider value 1 of Z. Then $\mathcal{D}_1 = \{1, 3, 4, 5, 9, 10\}.$

index	X	Y	Z	class
1	1	0	1	Yes
3	1	0	1	Yes
4	1	0	1	Yes
5	0	1	1	No
9	1	1	1	No
10	0	0	1	Yes

. Thus
$$p_{\mathrm{Yes}} = 4/6$$
 and $p_{\mathrm{No}} = 2/6$

•
$$Gini(\mathcal{D}_1) = 1 - p_{Yes}^2 - p_{No}^2 = 1 - (4/6)^2 - (2/6)^2 = 0.444$$

* Consider value 0 of Y. Then $\mathcal{D}_0 = \{2, 6, 7, 8\}.$

index	X	Y	\mathbf{Z}	class
2	1	1	0	Yes
6	1	0	0	No
7	0	1	0	No
8	0	1	0	No

· Thus
$$p_{\text{Yes}} = 1/4$$
 and $p_{\text{No}} = 3/4$

· Thus
$$p_{\text{Yes}} = 1/4$$
 and $p_{\text{No}} = 3/4$
· $Gini(\mathcal{D}_0) = 1 - p_{\text{Yes}}^2 - p_{\text{No}}^2 = 1 - (1/4)^2 - (3/4)^2 = 0.375$

$$ImpDec(\mathcal{D}, Z) = Gini(\mathcal{D}) - (|\mathcal{D}_1|/|\mathcal{D}|)Gini(\mathcal{D}_1) - (|\mathcal{D}_0|/|\mathcal{D}|)Gini(\mathcal{D}_0)$$

= 0.500 - (6/10) \cdot 0.444 - (4/10) \cdot 0.375 = 0.083

So, the attribute Y maximizes the decrease in impurity.

- Set the decision attribute of τ_1 to Y and continue recursively by calling
 - **ID3**($\{2, 5, 7, 8, 9\}, \{X, Z\}$) giving a node τ_2
 - **ID3**($\{1, 3, 4, 6, 10\}, \{X, Z\}$) giving a node τ_3 .
- Connect τ_1 with τ_2 by an edge assigned 1, and τ_1 with τ_3 using an edge assigned 0.

Now, let us demonstrate the recursive calls.

$$ID3({2,5,7,8,9},{X,Z})$$

Now
$$\mathcal{D} = \{2, 5, 7, 8, 9\}$$
 and $\mathcal{A} = \{X, Z\}$.

index	X	\mathbf{Z}	class
2	1	0	Yes
5	0	1	No
7	0	0	No
8	0	0	No
9	1	1	No

• At line 2, create the node τ_2 .

- No "if" condition is satisfied, so we continue on line 10. On line 10, identify the best classifying attribute:
 - We have already computed

$$Gini(\mathcal{D}) = 0.320$$

- Consider $X \in \mathcal{A}$ and compute $ImpDec(\mathcal{D}, X)$ as follows:
 - * Consider value 1 of X. Then $\mathcal{D}_1 = \{2, 9\}.$

index	X	Z	class
2	1	0	Yes
9	1	1	No

- · Thus $p_{\mathrm{Yes}} = 1/2$ and $p_{\mathrm{No}} = 1/2$
- · $Gini(\mathcal{D}_1) = 1 p_{Yes}^2 p_{No}^2 = 1 (1/2)^2 (1/2)^2 = 0.500$
- * Consider value 0 of X. Then $\mathcal{D}_0 = \{5, 7, 8\}.$

index	X	\mathbf{Z}	class
5	0	1	No
7	0	0	No
8	0	0	No

- · Thus $p_{Yes} = 0$ and $p_{No} = 1$
- $Gini(\mathcal{D}_0) = 1 p_{Yes}^2 p_{No}^2 = 1 0^2 1^2 = 0$

$$ImpDec(\mathcal{D}, X) = Gini(\mathcal{D}) - (|\mathcal{D}_1|/|\mathcal{D}|)Gini(\mathcal{D}_1) - (|\mathcal{D}_0|/|\mathcal{D}|)Gini(\mathcal{D}_0)$$

= 0.320 - (2/5) \cdot 0.500 - (3/5) \cdot 0.000 = 0.120

- Consider $Z \in \mathcal{A}$ and compute $ImpDec(\mathcal{D}, Z)$ as follows:
 - * Consider value 1 of Z. Then $\mathcal{D}_1 = \{5, 9\}.$

index	X	Z	class
5	0	1	No
9	1	1	No

- · Thus $p_{Yes} = 0$ and $p_{No} = 1$
- · $Gini(\mathcal{D}_1) = 1 p_{Yes}^2 p_{No}^2 = 1 0^2 1^2 = 0$
- * Consider value 0 of Z. Then $\mathcal{D}_0 = \{2, 7, 8\}.$

index	X	Z	class
2	1	0	Yes
7	0	0	No
8	0	0	No

- · Thus $p_{\text{Yes}} = 1/3$ and $p_{\text{No}} = 2/3$ · $Gini(\mathcal{D}_0) = 1 p_{\text{Yes}}^2 p_{\text{No}}^2 = 1 (1/3)^2 (2/3)^2 = 0.444$

$$ImpDec(\mathcal{D}, X) = Gini(\mathcal{D}) - (|\mathcal{D}_1|/|\mathcal{D}|)Gini(\mathcal{D}_1) - (|\mathcal{D}_0|/|\mathcal{D}|)Gini(\mathcal{D}_0)$$

= 0.320 - (2/5) \cdot 0.000 - (3/5) \cdot 0.444 = 0.053

So, the attribute X maximizes the decrease in impurity.

- Set the decision attribute of τ_2 to X and continue recursively by calling
 - * **ID3**($\{2,9\},\{Z\}$) giving a node τ_4
 - * **ID3**($\{5,7,8\},\{Z\}$) giving a node τ_5 .
- Connect τ_2 with τ_4 by an edge assigned 1, and τ_1 with τ_5 using an edge assigned 0.

$$\mathbf{ID3}(\{2,9\},\{Z\})$$

Now $\mathcal{D} = \{2, 9\}$ and $\mathcal{A} = \{Z\}$.

index	Z	class
2	0	Yes
9	1	No

- At line 2, create the node τ_4
- No "if" condition is satisfied, so we continue on line 10. On line 10, identify the best classifying attribute:

There is only Z, which is automatically selected.

- \bullet Set the decision attribute of τ_2 to Z and continue recursively by calling
 - $\mathbf{ID3}(\{9\},\{\})$ giving a node τ_6
 - **ID3**($\{2\}, \{\}$) giving a node τ_7 .
- Connect τ_4 with τ_6 by an edge assigned 1, and τ_4 with τ_7 using an edge assigned 0.

$ID3({9},{})$

Now $\mathcal{D} = \{9\}$ and $\mathcal{A} = \{\}$.

- At line 2, create the node τ_6
 - The "if" at line 5 is satisfied since all elements of \mathcal{D} are of class No. Assign No to τ_6 and return τ_6 .

$ID3({2},{})$

Now $\mathcal{D} = \{2\}$ and $\mathcal{A} = \{\}$.

- At line 2, create the node τ_7
- The "if" at line 5 is satisfied since all elements of \mathcal{D} are of class Yes. Assign Yes to τ_7 and return τ_7 .

 $\mathbf{ID3}(\{5,7,8\},\{Z\})$

Now $\mathcal{D} = \{5, 7, 8\}$ and $\mathcal{A} = \{X, Z\}$.

- At line 2, create the node τ_5
- The "if" at line 5 is satisfied since all elements of \mathcal{D} are of class No. Assign No to τ_5 and return τ_5 .

 $\mathbf{ID3}(\{1,3,4,6,10\},\{X,Z\})$

Now $\mathcal{D} = \{1, 3, 4, 6, 10\}$ and $\mathcal{A} = \{X, Z\}$.

index	X	\mathbf{Z}	class
1	1	1	Yes
3	1	1	Yes
4	1	1	Yes
6	1	0	No
10	0	1	Yes

- At line 2, create the node τ_3 .
- No "if" condition is satisfied, so we continue on line 10. On line 10, identify the best classifying attribute:
 - We have already computed

$$Gini(\mathcal{D}) = 0.320$$

- Consider $X \in \mathcal{A}$ and compute $ImpDec(\mathcal{D}, X)$ as follows:
 - * Consider value 1 of X. Then $\mathcal{D}_1 = \{1, 3, 4, 6\}.$

index	X	Z	class
1	1	1	Yes
3	1	1	Yes
4	1	1	Yes
6	1	0	No

- · Thus $p_{\mathrm{Yes}} = 3/4$ and $p_{\mathrm{No}} = 1/4$
- · $Gini(\mathcal{D}_1) = 1 p_{Yes}^2 p_{No}^2 = 1 (3/4)^2 (1/4)^2 = 0.375$
- * Consider value 0 of X. Then $\mathcal{D}_0 = \{10\}.$

- Thus $p_{Yes} = 1$ and $p_{No} = 0$
- · $Gini(\mathcal{D}_0) = 1 p_{Yes}^2 p_{No}^2 = 1 1^2 0^2 = 0$

$$ImpDec(\mathcal{D}, X) = Gini(\mathcal{D}) - (|\mathcal{D}_1|/|\mathcal{D}|)Gini(\mathcal{D}_1) - (|\mathcal{D}_0|/|\mathcal{D}|)Gini(\mathcal{D}_0)$$

= 0.320 - (4/5) \cdot 0.375 - (1/5) \cdot 0.000 = 0.020

- Consider $Z \in \mathcal{A}$ and compute $ImpDec(\mathcal{D}, Z)$ as follows:
 - * Consider value 1 of Z. Then $\mathcal{D}_1 = \{1, 3, 4, 10\}.$

index	X	Z	class
1	1	1	Yes
3	1	1	Yes
4	1	1	Yes
10	0	1	Yes

- · Thus $p_{\text{Yes}} = 1$ and $p_{\text{No}} = 0$
- $Gini(\mathcal{D}_1) = 1 p_{Yes}^2 p_{No}^2 = 1 1^2 0^2 = 0$
- * Consider value 0 of Z. Then $\mathcal{D}_0 = \{6\}.$

index	X	Z	class
6	1	0	No

- · Thus $p_{\mathrm{Yes}} = 0$ and $p_{\mathrm{No}} = 1$
- $Gini(\mathcal{D}_0) = 1 p_{Yes}^2 p_{No}^2 = 1 0^2 1^2 = 0$

$$ImpDec(\mathcal{D}, X) = Gini(\mathcal{D}) - (|\mathcal{D}_1|/|\mathcal{D}|)Gini(\mathcal{D}_1) - (|\mathcal{D}_0|/|\mathcal{D}|)Gini(\mathcal{D}_0)$$

= 0.320 - (4/5) \cdot 0.000 - (1/5) \cdot 0.000 = 0.320

So, the attribute Z maximizes the decrease in impurity.

- Set the decision attribute of τ_3 to Z and continue recursively by calling
 - * **ID3**($\{1, 3, 4, 10\}, \{X\}$) giving a node τ_8
 - * **ID3**($\{6\}, \{X\}$) giving a node τ_9 .
- Connect τ_3 with τ_8 by an edge assigned 1, and τ_3 with τ_9 using an edge assigned 0.

 $ID3(\{1, 3, 4, 10\}, \{X\})$

Now $\mathcal{D} = \{1, 3, 4, 10\}$ and $\mathcal{A} = \{X\}$.

- At line 2, create the node τ_8
- The "if" at line 5 is satisfied since all elements of \mathcal{D} are of class Yes. Assign Yes to τ_8 and return τ_8 .

 $ID3(\{6\}, \{X\})$

Now $\mathcal{D} = \{6\}$ and $\mathcal{A} = \{X\}$.

- At line 2, create the node τ_9
- The "if" at line 5 is satisfied since all elements of \mathcal{D} are of class No. Assign No to τ_9 and return τ_9 .

Figure 1: The tree