

Probability

PA154 Language Modeling (1.2)

Pavel Rychlý

pary@fi.muni.cz

February 21, 2024

Source: Introduction to Natural Language Processing (600.465) Jan Hajič, CS Dept., Johns Hopkins Univ. www.cs.jhu.edu/ hajic

Experiments & Sample Spaces

- Experiment, process, test, ...
- Set of possible basic outcomes: sample space Ω základní prostor obsahující možné výsledky)
 - coin toss (Ω = {head, tail}), die (Ω = {1..6})
 - ves/no opinion poll, quality test (bad/qood) ($\Omega = \{0,1\}$)
 - lottery ($|\Omega| \cong 10^7...10^{12}$)
 - \blacksquare # of traffic accidents somewhere per year (Ω = N)
 - spelling errors (Ω = Z^*), where Z is an aplhabet, and Z^* is set of possible strings over such alphabet
 - lacktriang missing word ($|\Omega|\cong$ vocabulary size)

Events

- Event jev A is a set of basic outcomes
- Usually A $\subset \Omega$, and all A $\in 2^{\Omega}$ (the event space, jevové pole)
 - Ω is the certain event jistý jev), \emptyset is the impossible event nemožný jev)
- Example:
 - experiment: three times coin toss
 - $\Omega = \{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT\}$
 - count cases with exactly two tails: then
 - A = {HTT, THT, TTH}
 - all heads:
 - A = {HHH}

Probability

- Repeat experiment many times, record how many times a given event A occured ("count" c_1).
- Do this whole series many times; remember all c_i s.
- Observation: if repeated really many times, the ratios of $\frac{c_i}{T_i}$ (where T_i is the number of experiments run in the *i-th* series) are close to some (unknown but) **constant** value.
- Call this constant a probability of A. Notation: p(A)

Estimating Probability

- Remember: ...close to an *unknown* constant.
- We can only estimate it:
 - from a single series (typical case, as mostly the outcome of a series is given to us we cannot repeat the experiment):

$$p(A)=\frac{c_1}{T_1}$$

- otherwise, take the weighted average of all $\frac{C_i}{T_i}$ (or, if the data allows, simply look at the set of series as if it is a single long series).
- This is the **best** estimate.

Example

- Recall our example:
 - experiment: three times coin toss
 - \square $\Omega = \{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT\}$
 - count cases with exactly two tails: *A* = {*HTT*, *THT*, *TTH*}
- Run an experiment 1000 times (i.e. 3000 tosses)
- Counted: 386 cases with two tails (HTT, THT or TTH)
- estimate: p(A) = 386/1000 = .386
- Run again: 373, 399, 382, 355, 372, 406, 359
 - p(A) = .379 (weighted average) or simply 3032/8000
- *Uniform* distribution assumption: p(A) = 3/8 = .375

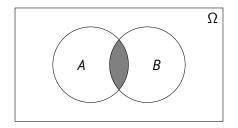
Basic Properties

- Basic properties:
 - ightharpoonup p: $2^{\Omega} \rightarrow [0,1]$
 - $p(\Omega) = 1$
 - Disjoint events: $p(\cup A_i) = \sum_i p(A_i)$
- NB: <u>axiomatic definiton</u> of probability: take the above three conditions as axioms
- Immediate consequences:
 - $P(\emptyset) = 0$
 - $p(\overline{A}) = 1 p(A)$
 - lacksquare $A \subseteq B \Rightarrow p(A) \le P(B)$
 - $\sum_{a\in\Omega} p(a) = 1$

Joint and Conditional Probability

- $p(A,B) = p(A \cap B)$
- $p(A|B) = \frac{p(A,B)}{p(B)}$
 - Estimating form counts:

$$p(A|B) = \frac{p(A,B)}{p(B)} = \frac{\frac{c(A \cap B)}{T}}{\frac{c(B)}{T}} = \frac{c(A \cap B)}{c(B)}$$

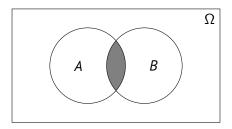


Bayes Rule

- p(A,B) = p(B,A) since $p(A \cap B) = p(B \cap A)$
 - therefore p(A|B)p(B) = p(B|A)p(A), and therefore:

Bayes Rule

$$p(A|B) = \frac{p(B|A) \times p(A)}{p(B)}$$



Independence

- \blacksquare Can we compute p(A,B) from p(A) and p(B)?
- Recall from previous foil:

$$p(A|B) = \frac{p(B|A) \times p(A)}{p(B)}$$

$$p(A|B) \times p(B) = p(B|A) \times p(A)$$

$$p(A,B) = p(B|A) \times p(A)$$

- ...we're almost there: how p(B|A) relates to p(B)?
 - p(B|A) = p(B) iff A and B are **independent**
- Example: two coin tosses, weather today and weather on March 4th 1789;
- Any two events for which p(B|A) = P(B)!

Chain Rule

$$\begin{aligned}
 &\rho(A_1, A_2, A_3, A_4, \dots, A_n) = \\
 &\rho(A_1 | A_2, A_3, A_4, \dots, A_n) \times p(A_2 | A_3, A_4, \dots, A_n) \times \\
 &\times p(A_3 | A_4, \dots, A_n) \times \dots \times p(A_{n-1} | A_n) \times p(A_n)
 \end{aligned}$$

■ this is a direct consequence of the Bayes rule.

The Golden Rule of Classic Statistical NLP

- Interested in an event A given B (where it is not easy or practical or desirable) to estimate p(A|B):
- take Bayes rule, max over all Bs:

■
$$argmax_A p(A|B) = argmax_A \frac{p(B|A) \times p(A)}{p(B)} =$$

$$\boxed{argmax_A (p(B|A) \times p(A))}$$

...as p(B) is constant when changing As

Random Variables

- is a function $X : \Omega \rightarrow Q$
 - in general $Q = R^n$, typically R
 - easier to handle real numbers than real-world events
- random variable is discrete if Q is countable (i.e. also if finite)
- Example: *die*: natural "numbering" [1,6], *coin*: {0,1}
- Probability distribution:
 - $p_X(x) = p(X = x) =_{df} p(A_X)$ where $A_X = \{a \in \Omega : X(a) = x\}$
 - often just p(x) if it is clear from context what X is

Expectation Joint and Conditional Distributions

- is a mean of a random variable (weighted average)
 - $E(X) = \sum_{x \in X(\Omega)} x.p_X(x)$
- Example: one six-sided die: 3.5, two dice (sum): 7
- Joint and Conditional distribution rules:
 - analogous to probability of events
- Bayes: $p_{X|Y}(x,y) =_{notation} p_{XY}(x|y) =_{even simpler notation}$

$$\left(p(x|y) = \frac{p(y|x).p(x)}{p(y)}\right)$$

■ Chain rule: p(w,x,y,z) = p(z).p(y|z).p(x|y,z).p(w|x,y,z)

Standard Distributions

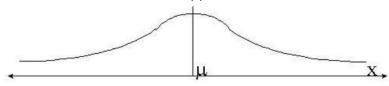
- Binomial (discrete)
 - outcome: 0 or 1 (thus binomial)
 - make *n* trials
 - interested in the (probability of) numbers of successes r
- Must be careful: it's not uniform!
- $p_b(r|n) = \frac{\binom{n}{r}}{2^n}$ (for equally likely outcome)
- $\binom{n}{r}$ counts how many possibilities there are for choosing r objects out of n;
- $(ⁿ_r) = \frac{n!}{(n-r)!r!}$

Continuous Distributions

■ The normal distribution ("Gaussian")

$$p_{norm}(x|\mu,\sigma) = exp \left[\frac{-(x-\mu)^2}{2\sigma^2} \over \sigma\sqrt{2\pi} \right]$$

- where:
 - \blacksquare μ is the mean (x-coordinate of the peak) (0)
 - \bullet of is the standard deviation (1)



other: hyperbolic, t