
LM Smoothing
(The EM Algorithm)
PA154 Language Modeling (2.3)

Pavel Rychlý

pary@fi.muni.cz

February 28, 2025

Source: Introduction to Natural Language Processing (600.465)
Jan Hajič, CS Dept., Johns Hopkins Univ.
www.cs.jhu.edu/~hajic

The Zero Problem

"Raw" n-gram language model estimate:
necessarily, some zeros

!many: trigram model→ 2.16× 1014 parameters, data ~109

words
which are true 0?

optimal situation: even the least frequent trigram would be seen
several times, in order to distinguish it’s probability vs. other
trigrams
optimal situation cannot happen, unfortunately
(open question: how many data would we need?)

→ we don’t know
we must eliminate zeros

Two kinds of zeros: p(w|h) = 0, or even p(h) = 0!

Pavel Rychlý · LM Smoothing · February 28, 2025 2 / 18

Why do we need Nonzero Probs?

To avoid infinite Cross Entropy:
happens when an event is found in test data which has not
been seen in training data

H(p) =∞: prevents comparing data with ≥ 0 "errors"
To make the system more robust

low count estimates:
they typically happen for "detailed" but relatively rare
appearances

high count estimates: reliable but less "detailed"

Pavel Rychlý · LM Smoothing · February 28, 2025 3 / 18

Eliminating the Zero Probabilites: Smoothing

Get new p’(w) (same Ω): almost p(w) but no zeros
Discount w for (some) p(w) > 0: new p′(w) < p(w)

∑

w∈discounted

(p(w)− p′(w)) = D

Distribute D to all w; p(w) = 0: new p′(w) > p(w)

possibly also to other w with low p(w)

For some w (possibly): p′(w) = p(w)

Make sure
∑

w∈Ω p′(w) = 1
There are many ways of smoothing

Pavel Rychlý · LM Smoothing · February 28, 2025 4 / 18

Smoothing by Adding 1
Simplest but not really usable:

Predicting words w from a vocabulary V, training data T:

p′(w |h) =
c(h,w) + 1
c(h) + |V |

for non-conditional distributions: p′(w) = c(w)+1
|T |+|V |

Problem if |V | > c(h) (as is often the case; even >> c(h)!)

Example
Training data: <s> what is it what is small? |T| = 8
V = {what, is, it, small, ?,<s> ,flying, birds, are, a, bird, .}, |V| = 12
p(it) = .125, p(what) = .25, p(.)=0 p(what is it?) = .252 × .1252 ∼= .001

p(it is flying.) = .125×.25× 02 = 0
p’(it) = .1, p’(what) = .15, p’(what is it?) = .152 × .12 ∼= .0002
p’(.) = .05

p’(it is flying.) = .1× .15× .052 ∼= .00004

Pavel Rychlý · LM Smoothing · February 28, 2025 5 / 18

Adding less than 1
Equally simple:

Predicting word w from a vocabulary V, training data T:

p′(w |h) =
c(h,w) + λ

c(h) + λ|V | , λ < 1

for non-conditional distributions: p′(w) = c(w)+λ
|T |+λ|V |

Example
Training data: <s> what is it what is small? |T| = 8
V = {what, is, it, small, ?,<s> ,flying, birds, are, a, bird, .}, |V| = 12
p(it) = .125, p(what) = .25, p(.)=0 p(what is it?) = .252 × .1252 ∼= .001

p(it is flying.) = .125×.25× 02 = 0
Use λ = .1
p’(it) ∼= .12, p’(what) ∼= .23, p’(what is it?) = .232 × .122 ∼= .0007
p’(.) ∼= .01

p’(it is flying.) = .12×.23× .012 ∼= .000003

Pavel Rychlý · LM Smoothing · February 28, 2025 6 / 18

Good-Turing

Suitable for estimation from large data
similar idea: discount/boost the relative frequency estimate:

pr (w) =
(c(w) + 1)× N(c(w) + 1)

|T | × N(c(w))

where N(c) is the count of words with count c
(count-of-counts)
specifically, for c(w) = 0 (unseen words), pr (w) = N(1)

|T |×N(0)

good for small counts (< 5–10, where N(c) is high)
normalization! (so that we have

∑
w p′(w) = 1)

Pavel Rychlý · LM Smoothing · February 28, 2025 7 / 18

Good-Turing: An Example
Remember: pr (w) = (c(w)+1)×N(c(w)+1)

|T |×N(c(w))

Training data: <s> what is it what is small? |T| = 8
V = {what, is, it, small, ?,<s> ,flying, birds, are, a, bird, .}, |V| = 12
p(it) = .125, p(what) = .25, p(.)=0 p(what is it?) = .252 × .1252 ∼= .001

p(it is flying.) = .125×.25× 02 = 0

Raw estimation (N(0) = 6,N(1) = 4,N(2) = 2,N(i) = 0, for i > 2):
pr (it) = (1+1)×N(1+1)/(8×N(1)) = 2×2/(8×4) = .125
pr (what) = (2+1)×N(2+1)/(8×N(2)) = 3×0/(8×2) = 0:

keep orig. p(what)
pr (.) = (0+1)×N(0+1)/(8×N(0)) = 1×4/(8×6) ∼= .083

Normalize (divide by 1.5 =
∑

w∈|V | pr (w)) and compute:
p’(it) ∼= .08, p’(what) ∼= .17, p’(.) ∼= .06
p’(what is it?) = .172 × .082 ∼= .0002
p’(it is flying.) = .082 × .17× .062 ∼= .00004

Pavel Rychlý · LM Smoothing · February 28, 2025 8 / 18

Smoothing by Combination: Linear
Interpolation

Combine what?
distribution of various level of detail vs. reliability

n-gram models:
use (n-1)gram, (n-2)gram, ..., uniform
−→ reliability
←− detail

Simplest possible combination:
– sum of probabilities, normalize:

p(0|0) = .8, p(1|0) = .2, p(0|1) = 1, p(1|1) = 0,
p(0) = .4, p(1) = .6
p’(0|0) = .6, p’(1|0) = .4, p’(0|1) = .7, p’(1|1) = .3

Pavel Rychlý · LM Smoothing · February 28, 2025 9 / 18

Typical n-gram LM Smoothing

Weight in less detailed distributions using λ = (λ0, λ1, λ2, λ3):
p’λ(wi |wi−2,wi−1) = λ3p3(wi |wi−2,wi−1)+

λ2p2(wi |wi−1) + λ1p1(wi) + λ0/|V |
Normalize:

λi > 0,
∑n

i=0 λi = 1 is sufficient (λ0 = 1−∑n
i=1 λi)(n = 3)

Estimation using MLE:
fix the p3,p2,p1 and |V| parameters as estimated from the
training data
then find such {λi } which minimizes the cross entropy
(maximazes probablity of data): − 1

|D|
∑|D|

i=1 log2(p′λ(wi |hi))

Pavel Rychlý · LM Smoothing · February 28, 2025 10 / 18

Held-out Data

What data to use?
– try training data T: but we will always get λ3 = 1

why? let piT be an i-gram distribution estimated using r.f. from T)
minimizing HT (p’λ) over a vector λ, p’λ =
λ3p3T + λ2p2T + λ1p1T + λ0/|V |
– remember HT (p’λ) = H(p3T) + D(p3T ||p’λ); p3T fixed→ H(p3T) fixed,
best)
– which p’λ minimizes HT (p’λ)? Obviously, a p’λ for which D(p3T ||p’λ) =
0
– ...and that’s p3T (because D(p||p) = 0, as we know)
– ...and certainly p’λ = p3T ifλ3 = 1 (maybe in some other cases, too).
– (p’λ = 1 × p3T + 0 × p2T + 1 × p1T + 0/|V|)

– thus: do not use the training data for estimation of λ!
must hold out part of the training data (heldout data, H)
...call remaining data the (true/raw) training data, T
the test data S (e.g., for comparison purposes): still different data!

Pavel Rychlý · LM Smoothing · February 28, 2025 11 / 18

The Formulas

Repeat: minimizing
−1
|H|

∑|H|
i=1 log2(p′λ(wi |hi)) over λ

p′λ(wi |hi) = p′λ(wi |wi−2,wi−1) =
= λ3p3(wi |wi−2,wi−1) + λ2p2(wi |wi−1) + λ1p1(wi) + λ0

1
|V |

"Expected counts of lambdas": j = 0..3

c(λj) =

|H|∑

i=1

λjpj(wi |hi)

p′λ(wi |hi)

"Next λ": j = 0..3

λj,next =
c(λj)∑3

k=0 c(λk)

Pavel Rychlý · LM Smoothing · February 28, 2025 12 / 18

The (Smoothing) EM Algorithm

1. Start with some λ, such that λ > 0 for all j ∈ 0..3
2. Compute "Expected Counts" for eachλj .
3. Compute new set of λj , using "Next λ" formula.
4. Start over at step 2, unless a termination condition is met.

Termination condition: convergence of λ.
– Simply set an ε, and finish if |λj − λj,next | < ε for each j (step 3).

Guaranteed to converge: follows from Jensen’s inequality, plus
a technical proof.

Pavel Rychlý · LM Smoothing · February 28, 2025 13 / 18

Remark on Linear Interpolation Smoothing

"Bucketed Smoothing":
– use several vectors of λ instead of one, based on (the frequency
of) history: λ(h)

e.g. for h = (micrograms,per) we will have
λ(h) = (.999, .0009, .00009, .00001)

(because "cubic" is the only word to follow...)
– actually: not a separate set for each history, but rather a set for
"similar" histories ("bucket"):

λ(b(h)), where b: V2 → N (in the case of trigrams)
b classifies histories according to their reliability (~frequency)

Pavel Rychlý · LM Smoothing · February 28, 2025 14 / 18

Bucketed Smoothing: The Algorithm

First, determine the bucketing function b (use heldout!):
– decide in advance you want e.g. 1000 buckets
– compute the total frequency of histories in 1 bucket (fmax (b))
– gradually fill your buckets from the most frequent bigrams so that
the sum of frequencies does not exceed fmax (b) (you might end up
with slightly more than 1000 buckets)

Divide your heldout data according to buckets
Apply the previous algorithm to each bucket and its data

Pavel Rychlý · LM Smoothing · February 28, 2025 15 / 18

Simple Example
Raw distribution (unigram only; smooth with uniform):
p(a) = .25, p(b) = .5, p(α) = 1/64 for α ∈ {c..r}, = 0 for the rest: s, t, u, v, w,
x, y, z

Heldout data: baby; use one set of λ
(λ1: unigram, λ0: uniform)
Start with λ0 = λ1 = .5:

p′λ(b) = .5× .5 + .5/26 = .27
p′λ(a) = .5× .25 + .5/26 = .14
p′λ(y) = .5× 0 + .5/26 = .02

c(λ1) = .5×.5/.27 + .5×.25/.14 + .5×.5/.27 + .5×0/.02 = 2.27
c(λ0) = .5×.04/.27 + .5×.04/.14 + .5×.04/.27 + .5×.04/.02 = 1.28
Normalize λ1,next = .68, λ0,next = .32
Repeat from step 2 (recompute p′λ first for efficient computation,
then c(λi), ...).
Finish when new lambdas almost equal to the old ones (say, < 0.01
difference).

Pavel Rychlý · LM Smoothing · February 28, 2025 16 / 18

Some More Technical Hints

Set V = {all words from training data}.
You may also consider V = T ∪ H, but it does not make the
coding in any way simpler (in fact, harder).
But: you must never use the test data for your vocabulary

Prepend two "words" in front of all data:
avoids beginning-of-data problems
call these index -1 and 0: then the formulas hold exactly

When cn(w,h) = 0:
Assing 0 probability to pn(w|h) where cn−1(h) > 0, but a uniform
probablity (1/|V|) to those pn(w|h) where cn−1(h) = 0 (this must
be done both when working on the heldout data during EM, as
well as when computing cross-entropy on the test data!)

Pavel Rychlý · LM Smoothing · February 28, 2025 17 / 18

Back-off model

Combines n-gram models
using lower order in not enough information in higher order

Pbo(wi |wi−n+1 . . .wi−1) =

= dwi−n+1...wi

C(wi−n+1 . . .wi−1wi)

C(wi−n+1 . . .wi−1)
if C(wi−n+1 . . .wi) > k

= αwi−n+1...wi−1Pbo(wi |wi−n+2 . . .wi−1) otherwise

Pavel Rychlý · LM Smoothing · February 28, 2025 18 / 18

