

LM Smoothing (The EM Algorithm)

PA154 Language Modeling (2.3)

Pavel Rychlý

pary@fi.muni.cz

February 28, 2025

Source: Introduction to Natural Language Processing (600.465) Jan Hajič, CS Dept., Johns Hopkins Univ. www.cs.jhu.edu/~hajic

The Zero Problem

- "Raw" n-gram language model estimate:
 - necessarily, some zeros
 - !many: trigram model \rightarrow 2.16 \times 10¹⁴ parameters, data ~10⁹ words
 - which are true 0?
 - optimal situation: even the least frequent trigram would be seen several times, in order to distinguish it's probability vs. other trigrams
 - optimal situation cannot happen, unfortunately (open question: how many data would we need?)
 - → we don't know
 - we must eliminate zeros
- Two kinds of zeros: p(w|h) = 0, or even p(h) = 0!

Why do we need Nonzero Probs?

- To avoid infinite Cross Entropy:
 - happens when an event is found in test data which has not been seen in training data
 - $H(p) = \infty$: prevents comparing data with ≥ 0 "errors"
- To make the system more robust
 - low count estimates:
 - they typically happen for "detailed" but relatively rare appearances
 - high count estimates: reliable but less "detailed"

Eliminating the Zero Probabilites: Smoothing

- Get new p'(w) (same Ω): almost p(w) but no zeros
- Discount w for (some) p(w) > 0: new p'(w) < p(w)

$$\sum_{w \in \textit{discounted}} (p(w) - p'(w)) = D$$

- Distribute D to all w; p(w) = 0: new p'(w) > p(w)■ possibly also to other w with low p(w)
- For some w (possibly): p'(w) = p(w)
- Make sure $\sum_{w \in \Omega} p'(w) = 1$
- There are many ways of smoothing

Smoothing by Adding 1

Simplest but not really usable:

■ Predicting words w from a vocabulary V, training data T:

$$p'(w|h) = \frac{c(h, w) + 1}{c(h) + |V|}$$

- for non-conditional distributions: $p'(w) = \frac{c(w)+1}{|T|+|V|}$
- Problem if |V| > c(h) (as is often the case; even >> c(h)!)

Example

Adding less than 1

Equally simple:

Predicting word w from a vocabulary V, training data T:

$$p'(w|h) = \frac{c(h, w) + \lambda}{c(h) + \lambda |V|}, \quad \lambda < 1$$

• for non-conditional distributions: $p'(w) = \frac{c(w) + \lambda}{|T| + \lambda |V|}$

Example

Good-Turing

Suitable for estimation from large data

similar idea: discount/boost the relative frequency estimate:

$$p_r(w) = \frac{(c(w)+1) \times N(c(w)+1)}{|T| \times N(c(w))}$$

where N(c) is the count of words with count c (count-of-counts) specifically for c(w) = 0 (unseen words) $p_c(w) = \frac{N}{c}$

- specifically, for c(w)=0 (unseen words), $p_r(w)=\frac{N(1)}{|T|\times N(0)}$
- **good for small counts (< 5–10, where** N(c) is high)
- normalization! (so that we have $\sum_{w} p'(w) = 1$)

Good-Turing: An Example

```
Remember: p_r(w) = \frac{(c(w)+1)\times N(c(w)+1)}{|T|\times N(c(w))}
```

■ Raw estimation (N(0) = 6, N(1) = 4, N(2) = 2, N(i) = 0, for i > 2): $p_r(it) = (1+1) \times N(1+1)/(8 \times N(1)) = 2 \times 2/(8 \times 4) = .125$ $p_r(\text{what}) = (2+1) \times N(2+1)/(8 \times N(2)) = 3 \times 0/(8 \times 2) = 0$: keep orig. p(what) $p_r(.) = (0+1) \times N(0+1)/(8 \times N(0)) = 1 \times 4/(8 \times 6) \cong .083$

Normalize (divide by $1.5 = \sum_{w \in |V|} p_r(w)$) and compute: $p'(it) \cong .08$, $p'(what) \cong .17$, $p'(.) \cong .06$ $p'(what is it?) = .17^2 \times .08^2 \cong .0002$ $p'(it is flying.) = .08^2 \times .17 \times .06^2 \cong .00004$

Smoothing by Combination: Linear Interpolation

- Combine what?
 - distribution of various level of detail vs. reliability
- n-gram models:
 - use (n-1)gram, (n-2)gram, ..., uniform

 → reliability

 ← detail
- Simplest possible combination:
 - sum of probabilities, normalize:
 - p(0|0) = .8, p(1|0) = .2, p(0|1) = 1, p(1|1) = 0, p(0) = .4, p(1) = .6
 - p'(0|0) = .6, p'(1|0) = .4, p'(0|1) = .7, p'(1|1) = .3

Typical n-gram LM Smoothing

Weight in less detailed distributions using $\lambda = (\lambda_0, \lambda_1, \lambda_2, \lambda_3)$: $p'_{\lambda}(w_i|w_{i-2}, w_{i-1}) = \lambda_3 p_3(w_i|w_{i-2}, w_{i-1}) +$

$$\lambda_{\lambda}(w_{i}|w_{i-2},w_{i-1}) = \lambda_{3}\rho_{3}(w_{i}|w_{i-2},w_{i-1}) + \lambda_{2}\rho_{2}(w_{i}|w_{i-1}) + \lambda_{1}\rho_{1}(w_{i}) + \lambda_{0}/|V|$$

Normalize:

$$\lambda_i > 0, \sum_{i=0}^n \lambda_i = 1$$
 is sufficient $(\lambda_0 = 1 - \sum_{i=1}^n \lambda_i)(n = 3)$

- Estimation using MLE:
 - $\underline{\text{fix}}$ the p_3, p_2, p_1 and |V| parameters as estimated from the training data
 - then find such $\{\lambda_i\}$ which minimizes the cross entropy (maximazes probablity of data): $-\frac{1}{|D|}\sum_{i=1}^{|D|}log_2(p'_{\lambda}(w_i|h_i))$

Held-out Data

- What data to use?
 - try training data T: but we will always get $\lambda_3 = 1$
 - why? let p_{iT} be an i-gram distribution estimated using r.f. from T)
 - minimizing $H_T(p'_{\lambda})$ over a vector λ , p'_{λ} =

$$\lambda_3 p_{3T} + \lambda_2 p_{2T} + \lambda_1 p_{1T} + \lambda_0 / |V|$$

- remember $H_T(p'_{\lambda}) = H(p_{3T}) + D(p_{3T}||p'_{\lambda})$; p_{3T} fixed $\rightarrow H(p_{3T})$ fixed, best)
- which p'_{λ} minimizes $H_T(p'_{\lambda})$? Obviously, a p'_{λ} for which $D(p_{3T}||p'_{\lambda}) = 0$
- ...and that's p_{3T} (because D(p||p) = 0, as we know)
- ...and certainly $p'_{\lambda} = p_{3T}if\lambda_3 = 1$ (maybe in some other cases, too).
- $-(p'_{\lambda} = 1 \times p_{3T} + 0 \times p_{2T} + 1 \times p_{1T} + 0/|V|)$
- thus: do not use the training data for estimation of λ !
 - must hold out part of the training data (*heldout* data, <u>H</u>)
 - ...call remaining data the (true/raw) training data, <u>T</u>
 - the test data S (e.g., for comparison purposes): still different data!

The Formulas

Repeat: minimizing $\frac{-1}{|H|} \sum_{i=1}^{|H|} log_2(p'_{\lambda}(w_i|h_i))$ over λ

$$\begin{aligned} p'_{\lambda}(w_i|h_i) &= p'_{\lambda}(w_i|w_{i-2},w_{i-1}) = \\ &= \lambda_3 p_3(w_i|w_{i-2},w_{i-1}) + \lambda_2 p_2(w_i|w_{i-1}) + \lambda_1 p_1(w_i) + \lambda_0 \frac{1}{|V|} \end{aligned}$$

"Expected counts of lambdas": j = 0..3

$$c(\lambda_j) = \sum_{i=1}^{|H|} \frac{\lambda_j p_j(w_i|h_i)}{p'_{\lambda}(w_i|h_i)}$$

"Next λ ": i = 0..3

$$\lambda_{j,\textit{next}} = rac{c(\lambda_j)}{\sum_{k=0}^3 c(\lambda_k)}$$

The (Smoothing) EM Algorithm

- 1. Start with some λ , such that $\lambda > 0$ for all $j \in 0...3$
- 2. Compute "Expected Counts" for each λ_i .
- 3. Compute new set of λ_i , using "Next λ " formula.
- 4. Start over at step 2, unless a termination condition is met.
- Termination condition: convergence of λ .

 Simply set an ε , and finish if $|\lambda_i \lambda_{j,next}| < \varepsilon$ for each j (step 3).
- Guaranteed to converge: follows from Jensen's inequality, plus a technical proof.

Remark on Linear Interpolation Smoothing

- "Bucketed Smoothing":
 - use several vectors of λ instead of one, based on (the frequency of) history: $\lambda(h)$
 - e.g. for h = (micrograms,per) we will have $\lambda(h) = (.999, .0009, .00009, .00001)$ (because "cubic" is the only word to follow...)
 - actually: not a separate set for each history, but rather a set for "similar" histories ("bucket"):
 - $\lambda(b(h))$, where b: $V^2 \rightarrow N$ (in the case of trigrams)

b classifies histories according to their reliability (~frequency)

Bucketed Smoothing: The Algorithm

- First, determine the bucketing function b (use heldout!):
 - decide in advance you want e.g. 1000 buckets
 - compute the total frequency of histories in 1 bucket ($f_{max}(b)$)
 - gradually fill your buckets from the most frequent bigrams so that the sum of frequencies does not exceed $f_{max}(b)$ (you might end up with slightly more than 1000 buckets)
- Divide your heldout data according to buckets
- Apply the previous algorithm to each bucket and its data

Simple Example

- Raw distribution (unigram only; smooth with uniform): p(a) = .25, p(b) = .5, $p(\alpha) = 1/64$ for $\alpha \in \{c..r\}$, = 0 for the rest: s, t, u, v, w, x, y, z
- Heldout data: baby; use one set of λ (λ_1 : unigram, $\overline{\lambda_0}$: uniform)
- Start with $\lambda_0 = \lambda_1 = .5$:

$$p'_{\lambda}(b) = .5 \times .5 + .5/26 = .27$$

 $p'_{\lambda}(a) = .5 \times .25 + .5/26 = .14$
 $p'_{\lambda}(y) = .5 \times 0 + .5/26 = .02$

$$c(\lambda_1) = .5 \times .5/.27 + .5 \times .25/.14 + .5 \times .5/.27 + .5 \times 0/.02 = 2.27$$

 $c(\lambda_0) = .5 \times .04/.27 + .5 \times .04/.14 + .5 \times .04/.27 + .5 \times .04/.02 = 1.28$
Normalize $\lambda_{1,next} = .68$, $\lambda_{0,next} = .32$

Repeat from step 2 (recompute p'_{λ} first for efficient computation, then $c(\lambda_i), ...)$.

Finish when new lambdas almost equal to the old ones (say, < 0.01 difference).

Some More Technical Hints

- Set V = {all words from training data}.
 - You may also consider $V = T \cup H$, but it does not make the coding in any way simpler (in fact, harder).
 - But: you must *never* use the test data for your vocabulary
- Prepend two "words" in front of all data:
 - avoids beginning-of-data problems
 - call these index -1 and 0: then the formulas hold exactly
- When $c_n(w,h) = 0$:
 - Assing 0 probability to $p_n(w|h)$ where $c_{n-1}(h) > 0$, but a uniform probablity (1/|V|) to those $p_n(w|h)$ where $c_{n-1}(h) = 0$ (this must be done both when working on the heldout data during EM, as well as when computing cross-entropy on the test data!)

Back-off model

- Combines n-gram models
- using lower order in not enough information in higher order

$$\begin{split} P_{bo}(w_i|w_{i-n+1}\dots w_{i-1}) &= \\ &= d_{w_{i-n+1}\dots w_i} \frac{C(w_{i-n+1}\dots w_{i-1}w_i)}{C(w_{i-n+1}\dots w_{i-1})} & \text{if } C(w_{i-n+1}\dots w_i) > k \\ &= \alpha_{w_{i-n+1}\dots w_{i-1}} P_{bo}(w_i|w_{i-n+2}\dots w_{i-1}) & \text{otherwise} \end{split}$$