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Outline

» Metric learning

 Vector/Product quantization

(0.6, 0.5, ..., 0.1) — (7, 2, ..., 4) (e.g., 64x compression)

« Approximate similarity search (e.g., using FAISS)
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Metric learning

* Metric learning goal — representing data objects, such as images, text
or whatever, with numerical vectors
* Vectors = embeddings or embedding vectors

« Function f transforms a given object (e.g., image x) into an n-dimensional
vector f(x) € R"

Neural network

—> (0.2,0.9, ..., 0,7)
f(x) € R

« Former approach — individual features of the vector representation had to be
manually specified

« Current approach — the vector representation is learned automatically

Jan Sedmidubsky | PV056 Machine Learning and Data Mining



Metric learning

» Desired properties:
« Similar data objects - vectors that are close together
 Dissimilar data objects - vectors that are far apart

« Quantification of similarity/closeness:
« Requires a distance measure in the underlying vector space
« Commonly used measure — Euclidean distance function (L2 norm)

.+ dist(f(O), f) = If @) = FDI

* Metric learning process — pulling together the embeddings for similar
objects and pushing apart those for dissimilar objects

* What exactly is meant by similar and dissimilar objects?
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Metric learning

« Examples of similar and dissimilar objects on identity-based similarity:
« Face recognition
 Retail-product recognition

* Object identities (products, persons) lead to supervised clustering of
the learned embeddings - why not just use a classifier?

« Extreme classification — a very large number of classes (e.g., tens of thousands)
with highly unbalanced training data

 Stanford Online Products dataset (scraped from eBay) contains 120 K images
for 23 K product classes

« Output layer of some deep neural network with 23 K nodes and 4 images/class = you will get
an unsatisfactory result
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Metric learning

 Embedding vectors are:

 As close together as they can be for the images in each class
 As far as they can be from the embeddings for the other classes

« Example of recognition of facial expressions

Different views of a particular subject-expression

« Basic ideas in metric learning revolve around: .......
« Pairwise contrastive loss

[Roy at al.: Contrastive Learning of View-invariant Representations
for Facial Expressions Recognition, ACM TOMM 2023]

« [Hadsell et al.: Dimensionality Reduction by Learning an Invariant Mapping, CVPR 2006]
 Triplet loss

» [Schroff et al.: FaceNet: A Unified Embedding for Face Recognition and Clustering, CVPR 2015]

Images of Class B
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Pairwise Contrastive (PC) loss

 Training a neural network in batches

« Goal — extract positive and negative pairs of training samples from a
batch (batch — list of training samples)

 Positive pairs — carry the same class label

i : : Th I ; *
- Negative pairs — carry different labels EeTeses O o
Positive Pairs:
X Xx X o o 0 00 o /
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X X o x % o . © /ﬂ
Positive pair Negative pair Txo 0

Jan Sedmidubsky | PV056 Machine Learning and Data Mining



PC loss — idea of calculation

* Loss (cost or objective) function L measures the discrepancy between
the predicted output of the model and the actual target values

« Purpose — to give the network feedback on how well it is performing so that it
can adjust its parameters (weights and biases) to improve over time

 During the training process, the loss should gradually decrease (up to 0O)

* PC loss calculation:
« A sum of the values calculated separately from positive pairs and negative pairs

» Contribution to the loss by positive pairs (L,) + contribution to the loss by
negative pairs (L)
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PC loss — positive pairs

 Contribution to the loss by positive pairs
- Positive pair (x}, x}) — pairwise distances as small as possible
 Positive loss — sum over all positive pairs from the batch:
, . - \12
L, = Z [dlSt (f(x{),f(xé))]
i
* i —Indexes all the positive pairs from the batch
« Square of the distance because it is differentiable everywhere
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PC loss — negative pairs

« Contribution to the loss by negative pairs

» Negative pair (x/,x]) — pairwise distances as large as possible
* | —Iindexes all the negative pairs from the batch

« But very dissimilar items amount to wasting the learning effort
« Two well-separated samples in a negative pair should not even participate in learning
* Threshold on maximal dissimilarity quantified by margin m
+ If dist(x], xJ) > m then the contribution to the loss should be 0

. If dist(x_{,xg) <m:L,=m-— dist(xi,xg)

* Negative loss — sum over all negative pairs from the batch:

b =, [max{o,m = e (rCe.F D))

J
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PC loss

* Overall loss for all pairs in batch by combining L, and L,,

 Binary variable y € {0,1}:
« y = 0 - positive pair
« y =1 - negative pair

L = Z(l =2 [dist (f(x{'),f(xé'))r + y; [max {O,m — dist (f(xi'),f(xé))}lz

» | —goes over all the pairs from the batch Batch example

positive [
y3 =0

negative g4
Y78 =1
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Triplet loss

 Creating triplets (Anchor, Positive, Negative) from a batch
* (Anchor, Positive) — carry the same class label
* (Anchor, Negative) — carry different labels

 Different mining strategies with different computational properties:
* Negative-hard mining
* Negative semi-hard mining
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Triplet loss — creating triplets

* For every pair having the same class label:
* One selected as Anchor, the other as Positive: (Anchor, Positive)

» For every (Anchor, Positive) pair:
* Negative objects are identified — objects with a different class than Anchor/Positive
* n1 (hard negative) — must be pushed further out
* n2 (semi-hard negative)
« n3 (easy negative)

°3

d :margin
a : Anchor
p : Positive
nl: Hard Negative
n2: Semi—Hard Negative
n3: Easy Negative
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Triplet loss — determining negatives

* Criteria for dividing a set of negatives:
« Hard-negative mining (n~n1): negatives closer to anchor than positive
* dist(a,n) < dist(a,p)
« Semi-hard negative mining (n~n2): negatives fall within margin o
» dist(a,p) < dist(a,n) < dist(a,p) + 0
« Easy negatives (n~n3): negatives that lie beyond the margin
 dist(a,p) + 6 < dist(a,n)

 Suitablility of negatives for training:
* Only easy negatives for training — insignificant role in learning, if any at all

* Only hard negatives for training — network:
« Converges to a local minimum at best, or
» Collapses to a state in which all the embeddings are zero

* The most suitable for training are semi-hard negatives
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Triplet loss — determining negatives

« Semi-hard negative mining (n2)
* Negatives sufficiently close to anchor

« Margin d has to be carefully set:
« Appropriate value — network correctly distinguishes between positive/negative samples
« Too large/small value — network optimization process may get stuck in a local minimum

* To properly set the margin, all embeddings are normalized to be of size unity
« Margin typically setto & = 0.2
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Triplet loss — calculation
e List of tripleﬁs (xft,x;, x1") of a batch of cardinality N

L = z max{0, dist?(f (x&), £ (x7)) — dist?(f (x), f (x™)) + B}
=1

* No contributions from the negatives that are outside the margin (max returns 0)
BEFORE AFTER
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Results on CIFAR-10

 Training on the CIFAR-10 dataset
« Contrastive loss learning: Precision@1 = 74%
* Triplet loss learning: Precision@1 = 84%

Metric Learning with CONTRASTIVE Loss_and_16_epochs Metric Learning with TRIPLET Loss and 8 epochs
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Coding issues

« Goal — determine pairs/triplets = calculate pair-wise distances

 Variables:
- Batch of size B
« Dimensionality of embeddings: M
 Embeddings-data array X of shape B x M
« Labels of embeddings: B X 1

« Easy solution — iterative processing (for-loops) to determine distances
* The cost of iterative processing is simply too much great

* GPU solution — matrix multiplications — not a friend with for-loops

* Thousand-fold speedup when you eliminate the loops that you would otherwise
need for estimating

Jan Sedmidubsky | PV056 Machine Learning and Data Mining



Coding issues

« Easy solution — iterative processing

embeddings = [ [0.0, 0.0, 0.0], ## We have 6 embeddings, each of size 3. ## (A)
(0.1, 0.1, 0.2],
(0.4, 0.3, 0.1],
[0.0, 0.0, 0.4],
(0.3, 0.0, 0.0],
(0.1, 0.0, 0.7] ]
labels = [0, 1, 0, 3, 4, 3] ## (B)
positive_pairs = [ (i,j) for i in range(len(labels))
for j in range(len(labels))
if j > i and labels[i] == labels[j] ] ## (C)
print( positive_pairs ) # [(0, 2), (3, B)] ## (D)
negative_pairs = [ (i,j) for i in range(len(labels))
for j in range(len(labels))
if j > i and labels[i] != labels[j] ] ## (E)
print( negative_pairs ) ## (F)
## (o, 1), (o, 3), (0, 4), (0, 5), (1, 2), (1, 3), (1, 4),
## (1, 8, 2, 3, (2, 49, (2, 5, (3, 4, 4, 5]
triplets = [ (item, neg) for item in positive_pairs
for neg in range(len(labels))
if labels[item[0]] != labels[neg] 1] ## (G)
print( triplets ) ## (H)
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Coding issues

* GPU solution — matrix multiplications
* Implementation based on tensors

* In case of iterative processing: if batch size is 128, this results in 8,192 fetches
from the GPU memory (1282/2)

 Solution using 1 GPU fetch - >8 K speedup
1) Determining pairs using the structure with labels (of B dimensionality):

>>> labels = torch.tensor ([0, 1, 0, 3, 4, 3])

>>> B = labels.shape[0] # B = 6

>>> labels_equal = labels.view(1,B) == labels.view(B,1)

>>> labels_equal

tensor([[ True, False, True, False, False, False],
[False, True, False, False, False, False],
[ True, False, True, False, False, False],
[False, False, False, True, False, Truel,
[False, False, False, False, True, False],
[False, False, False, True, False, Truell])
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Coding issues

* GPU solution — matrix multiplications

2) Calculating the distance matrix:

- Euclidean distance between vectors ¥ and y : ||X — Y|, = lIZll, — 2XyT + |,
» The square of the norm of each of the vectors
» The value of the dot product between the two vectors

 Calculating a dot product of every pair of embedding vectors in X:
dot_products = X@X.T

 Vector norms for the embedding vectors are on diagonal
squared_norms_embedding_vecs = torch.diagonal(dot_products)

Dot products between pairs of embedding vectors are in the off-diagonal elements

 Calculating the Euclidean distance matrix B X B (B = 6):
distance_matrix
= squared_norms_embedding_vecs.view(1,6) — 2.0 - dot_products
+ squared_norms_embedding_vecs.view(6, 1)

» Note: operators for tensors are overloaded to add (or subtract) three tensors of different shapes
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Image embeddings — what we know

 Training a neural network based on PC/Triplet loss learning

* Transform query and each database image into an embedding
« Mapping function f() extracting embedding f (x) for object x

Neural network

>
o —> (02,09,..,07)

f(x)

» Given two images x and y, their closeness can be quantified by the Euclidean

distance: dist(f(x), f(¥)) = lIf (x) — FIl>
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Search over image embeddings

* Query image ~ query embedding ~ query

* k-nearest neighbor (k-NN) query
* Finding the k database images that are the most similar to the query image

« Similarity between query and database images based on the Euclidean/cosine
distance between their embeddings

| need some
information...
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Search over image embeddings

« Many applications of image search, e.g.:

« Photo organization — grouping images into aloums automatically by recognizing
similar faces, locations, or objects
« Fashion and e-commerce — outfit pairing in online stores

« Recommending matching items (e.g., shoes, bags, or accessories) by comparing product
Images based on style, color, and texture

* Visual similarity in product search — enabling users to upload an image of a product to find
similar items in the store

 Cultural heritage and art preservation

« Artifact identification — comparing images of newly found artifacts with existing ones to
determine origin or classification

« Style similarity matching — finding paintings with similar styles for study or curation

* Duplicate image detection — removing similar or exact copies of an image in
large databases to ensure unique content

Jan Sedmidubsky | PV056 Machine Learning and Data Mining



Search over large image databases

 Brute-force approach:

« Comparing the guery embedding against each database embedding
* O(N) complexity (N is the size of the dataset) — not scalable
* How to search when the database of embeddings is very large?

 Solution — Approximate Nearest Neighbor (ANN) algorithms
« Many algorithms but leading ones are:

* Locality Sensitive Hashing (LSH) — PA212 course
* Product Quantization (PQ)
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Product Quantization (PQ)

* PQ — extension of the very old Vector Quantization (VQ) idea

* VQ Idea:
« Compressing a high-dimensional image vector (embedding) into a single
codeword, typically an integer value

* Pre-processing phase:

« Create a mapping from all codewords to the original image vectors within a database
« Each codeword points to the list of all the database images with the same codeword
« This mapping structure is referred to as the lookup table or inverted index 1 - 3 -
 Search phase: L \/l/\/v Y
« Transform the query into a single codeword DB vectors ¥
« Use the lookup table to get the candidate image vectors of the same codeword as the query
* It is also possible to consider candidate vectors having the codeword “relevant” (not strictly the same)
« Compute the distance between the original query vector and all candidate vectors

« Return the k-nearest candidate vectors with respect to the query vector

(02,09, ..,07) —> [
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VQ

« Compression idea:

 Partitioning a vector space into Voronoi cells with respect to a set of points
 Points are typically called the centroids (pivots) of the cells in which they reside

 Voronoi diagram — partitioning the D-dimensional space of embeddings into cells {c;, c,, ..., ¢, }
determined by pivots {p;, p,, ..., pn}; €ach cell c; gets its ID ~ codeword

« All the vectors in cell ¢; are closer to the pivot p; than to any other pivot

An example of the Voronoi diagram for the case of
four pivots {p,, p,, 3, p4} in the 2D plane
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VQ

* Pre-processing phase:

- Creating a codebook of n = 2% codewords

* The n centroids (~cells) are typically the K centroids generated by applying the K-means
algorithm to the (sample of) database of vectors

« Any vector can be quantized in the underlying vector space to one of the K cluster centers
 Vectors that fall in the same cluster will be mapped to the same codeword
 Clusters can be differently populated based on data distribution

« Each codeword is represented by an integer value - B-bit representation
- Managing a lookup table with 2% codewords
« Transforming each database image vector into a codeword

« Each codeword in the lookup table is associated with a list of the database images (or paths
to these images) of the same codeword

« Dimensionality of data can be dramatically reduced — example scenario:
« Each image represented by a 512-D embedding vector of floats = 512 - 4 = 2,048 bytes
e B =16 = 512-D vectors quantized to 21 = 65,536 codewords
« Each image then represented by the 16-bit code (2 bytes) - 1,024x compression
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VQ

» Search phase:
Before the query is transformed to codeword, the ranking of pivots is created
* The distance between the query vector and each pivot vector must be calculated

The query gets the codeword corresponding to the nearest (most-ranked) pivot
 Other “query-relevant” codewords can also be considered, e.g., as 2" or 39 most-ranked
The database vectors associated with the same codeword as the query
codeword (or any of “query-relevant” codewords) become candidates

The distance between the query vector and each candidate is evaluated

« Each candidate vector must be loaded, e.g., from secondary storage

The k-most similar candidates (with the smallest distance) are returned as the
guery result

lllustration of query evaluation:

* Query vector —> |4

« Candidates are database vectors e
associated with codeword |4

Query vector
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VQ

 Limitations of VQ:

- |f the codebook is too large (e.g., B = 64 = 2%* clusters are needed to be
found), it is impossible for K-means to detect such a huge number of clusters

« Returning the k-most query relevant database vectors requires to load a large
set of candidate vectors and calculate their distance with respect to the query

Jan Sedmidubsky | PV056 Machine Learning and Data Mining



g Vector

* Product quantization (PQ) idea:

« Original database vector split into several segments (sub-vectors)  =ggments
« Each sub-vector follows the vector quantization independently v
« Quantized vector — concatenation of codewords of individual segments [2]8] 9 [18]

* Pre-processing phase:

« Create a sub-gquantizer — a codebook for each of the segments — separately (i.e., #codebooks
= #segments)

 Clustering operation applied to each set of sub-vectors

« Create a mapping from all codewords of each codebook to the original image vectors within a
database

« Search phase:

 Original database vectors need not be loaded (e.g., from secondary storage)

 Distance between the query and a database vector is efficiently approximated
« Based on pre-computed distances between the query segments and centroids in each codebook
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PQ

* Pre-processing phase:

- Creating m segments = m codebooks, each of n = 28 codewords
« Each codeword is again represented by an integer value = B-bit representation

» Codewords of all segments are concatenated - (m - B)-bit representation
- Managing a lookup table with 25 codewords for each segment (m lookup tables)

Vector

Example scenario:
* Image as a 512-D vector of floats > 512 - 4 = 2,048 bytes
Segments « m =32 - 32 segments (codebooks)
- B =8 - 16-D sub-vectors quantized to 28 = 256 codewords
« Each image then as (32 - 8)-bit code (32 bytes) - 64x
compression
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PQ

« Search phase:

« 1) Precompute the distances between each query sub-vector and each centroid
in the corresponding codebook = m - 28 distances in total
- Distances kept within a query distance matrix QDM of size m x 25
* E.g., 32256 = 8,192 distances in the previous example scenario, which is cheap to compute

Query vector

* |llustration of distance precomputation:
« QDM of size m x 28 = 4 x 4 Segments
em=4,B =2
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PQ

» Search phase:
« 2) ldentify the nearest cluster(s) in the same way as in the VQ approach

« 3) Approximate the distance of each candidate vector in the nearest cluster(s):

 For i-th segment and associated codeword c; of the candidate vector, approximate the sub-
distance between i-th query segment and i-th candidate segment by the precomputed sub-

distance QDM]i, c;]
- Sum the sub-distances for all the segments: Y>> QDM[i, c;]

Candidate

lllustration of approximating the distance (for query [218] 9116 ):

+ Candidate [2J809]15]: 33 ,0DM[i,c;] =024+ 0.1+ 0.2+ 0.2 = 0.7
- Candidate [2]8J#2[15]: 0.2+ 0.1+ 0.7+ 0.2 = 1.2

- Candidate [2]8] 98] : 0.4 + 0.1+ 0.2+ 0.1 =0.8
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PQ

* Summary:

 For distance approximations, the candidate vectors are not accessed

« Accessing candidate vectors can be bottleneck in VQ, especially when vectors are stored
within secondary storage

« ANN search carried out efficiently in high dimensional vector spaces even when a database
has billions of vectors

« Approximated distances need not be perfect

T row o=d T 0% d
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Similarity search using FAISS

* FAISS — Facebook Al Similarity Search

 Library developed by Facebook Al Research for efficient similarity
search and clustering of dense vectors

» Useful for large-scale similarity search problems, which are common
In various machine learning and information retrieval tasks

* Designed to work on either the GPU or CPU and provides significant
performance improvements compared to other nearest neighbor
search algorithms

* One of the best implementation of the Product Quantization approach
to similarity search

* Implemented in C++ with Python bindings
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FAISS

« Several techniques to achieve efficient similarity search:

« Quantization — compresses the embeddings which significantly reduces
memory usage and accelerates distance computations
« Supports Product Quantization (PQ)

 Indexing — FAISS provides multiple index types for different use cases and
trade-offs between search speed and search quality

 Flat index — brute-force index that computes exact distances between query vectors and
indexed vectors

* IVF (Inverted File) index — partitioned index that divides the vector space into Voronoi cells

« HNSW (Hierarchical Navigable Small World) — graph-based index that builds a hierarchical
graph structure, enabling efficient nearest neighbor search with logarithmic complexity
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need exact search

FA I S S . + —f | —— T,,
« Example of IVF (Inverted File) index: el e R —
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FAISS

o Useful references

e Tutorials:

o https://engineering.fb.com/2017/03/29/data-infrastructure/faiss-a-library-for-efficient-similarity-
search/

e https://github.com/facebookresearch/faiss/wiki/

« Research papers:

« Johnson et al.: Billion-scale similarity search with GPUs, 2017:
https://arxiv.org/abs/1702.08734

* Douze et al.: The FAISS library, 2024 https://arxiv.org/abs/2401.08281
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sources

* Avi Kak and Charles Bouman: Metric Learning with Deep Neural
Networks. Purdue University, 2024

* https://lwww.pinecone.io/learn/series/faiss/faiss-tutorial/
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