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Outline
• Metric learning

• Vector/Product quantization

• Approximate similarity search (e.g., using FAISS)
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Metric learning
• Metric learning goal – representing data objects, such as images, text 

or whatever, with numerical vectors
• Vectors = embeddings or embedding vectors

• Function 𝑓 transforms a given object (e.g., image 𝑥) into an n-dimensional 
vector 𝑓(𝑥) ∈ ℝ𝑛

• Former approach – individual features of the vector representation had to be 
manually specified

• Current approach – the vector representation is learned automatically
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Metric learning
• Desired properties:

• Similar data objects → vectors that are close together

• Dissimilar data objects → vectors that are far apart

• Quantification of similarity/closeness:
• Requires a distance measure in the underlying vector space

• Commonly used measure – Euclidean distance function (L2 norm)

• 𝑑𝑖𝑠𝑡 𝑓 𝑥 , 𝑓 𝑦 = 𝑓 𝑥 − 𝑓 𝑦 2

• Metric learning process – pulling together the embeddings for similar 
objects and pushing apart those for dissimilar objects

• What exactly is meant by similar and dissimilar objects?
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Metric learning
• Examples of similar and dissimilar objects on identity-based similarity:

• Face recognition

• Retail-product recognition

• Object identities (products, persons) lead to supervised clustering of 
the learned embeddings → why not just use a classifier?
• Extreme classification – a very large number of classes (e.g., tens of thousands) 

with highly unbalanced training data

• Stanford Online Products dataset (scraped from eBay) contains 120 K images 
for 23 K product classes
• Output layer of some deep neural network with 23 K nodes and 4 images/class → you will get 

an unsatisfactory result
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Metric learning
• Embedding vectors are:

• As close together as they can be for the images in each class

• As far as they can be from the embeddings for the other classes

• Example of recognition of facial expressions

• Basic ideas in metric learning revolve around:
• Pairwise contrastive loss

• [Hadsell et al.: Dimensionality Reduction by Learning an Invariant Mapping, CVPR 2006]

• Triplet loss
• [Schroff et al.: FaceNet: A Unified Embedding for Face Recognition and Clustering, CVPR 2015]
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Pairwise Contrastive (PC) loss
• Training a neural network in batches

• Goal – extract positive and negative pairs of training samples from a 
batch (batch – list of training samples)
• Positive pairs – carry the same class label

• Negative pairs – carry different labels
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PC loss – idea of calculation
• Loss (cost or objective) function 𝐿 measures the discrepancy between 

the predicted output of the model and the actual target values
• Purpose – to give the network feedback on how well it is performing so that it 

can adjust its parameters (weights and biases) to improve over time

• During the training process, the loss should gradually decrease (up to 0)

• PC loss calculation:
• A sum of the values calculated separately from positive pairs and negative pairs

• Contribution to the loss by positive pairs (𝐿𝑝) + contribution to the loss by 
negative pairs (𝐿𝑛)
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PC loss – positive pairs
• Contribution to the loss by positive pairs

• Positive pair 𝑥1
𝑖 , 𝑥2

𝑖 – pairwise distances as small as possible

• Positive loss – sum over all positive pairs from the batch:

𝐿𝑝 =෍

𝑖

𝑑𝑖𝑠𝑡 𝑓 𝑥1
𝑖 , 𝑓 𝑥2

𝑖
2

• 𝑖 – indexes all the positive pairs from the batch

• Square of the distance because it is differentiable everywhere
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PC loss – negative pairs
• Contribution to the loss by negative pairs

• Negative pair 𝑥1
𝑗
, 𝑥2

𝑗
– pairwise distances as large as possible

• j – indexes all the negative pairs from the batch

• But very dissimilar items amount to wasting the learning effort
• Two well-separated samples in a negative pair should not even participate in learning

• Threshold on maximal dissimilarity quantified by margin 𝑚

• If 𝑑𝑖𝑠𝑡 𝑥1
𝑗
, 𝑥2

𝑗
> 𝑚 then the contribution to the loss should be 0

• If 𝑑𝑖𝑠𝑡 𝑥1
𝑗
, 𝑥2

𝑗
≤ 𝑚: 𝐿𝑛 = 𝑚 − 𝑑𝑖𝑠𝑡 𝑥1

𝑗
, 𝑥2

𝑗

• Negative loss – sum over all negative pairs from the batch:

𝐿𝑛 =෍

𝑗

max 0,𝑚 − 𝑑𝑖𝑠𝑡 𝑓 𝑥1
𝑗
, 𝑓 𝑥2

𝑗
2
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PC loss
• Overall loss for all pairs in batch by combining 𝐿𝑝 and 𝐿𝑛

• Binary variable 𝑦 ∈ 0,1 :
• 𝑦 = 0→ positive pair

• 𝑦 = 1→ negative pair

𝐿 =෍

𝑖

(1 − 𝑦𝑖) 𝑑𝑖𝑠𝑡 𝑓 𝑥1
𝑖 , 𝑓 𝑥2

𝑖
2
+ 𝑦𝑖 max 0,𝑚 − 𝑑𝑖𝑠𝑡 𝑓 𝑥1

𝑖 , 𝑓 𝑥2
𝑖

2

• 𝑖 – goes over all the pairs from the batch
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Triplet loss
• Creating triplets (Anchor, Positive, Negative) from a batch

• (Anchor, Positive) – carry the same class label

• (Anchor, Negative) – carry different labels

• Different mining strategies with different computational properties:
• Negative-hard mining

• Negative semi-hard mining
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Triplet loss – creating triplets
• For every pair having the same class label:

• One selected as Anchor, the other as Positive: (Anchor, Positive)

• For every (Anchor, Positive) pair:
• Negative objects are identified – objects with a different class than Anchor/Positive

• 𝑛1 (hard negative) – must be pushed further out

• 𝑛2 (semi-hard negative)

• 𝑛3 (easy negative)
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Triplet loss – determining negatives
• Criteria for dividing a set of negatives:

• Hard-negative mining (𝑛~𝑛1): negatives closer to anchor than positive
• 𝑑𝑖𝑠𝑡 𝑎, 𝑛 < 𝑑𝑖𝑠𝑡(𝑎, 𝑝)

• Semi-hard negative mining (𝑛~𝑛2): negatives fall within margin δ
• 𝑑𝑖𝑠𝑡 𝑎, 𝑝 < 𝑑𝑖𝑠𝑡 𝑎, 𝑛 < 𝑑𝑖𝑠𝑡 𝑎, 𝑝 + δ

• Easy negatives (𝑛~𝑛3): negatives that lie beyond the margin
• 𝑑𝑖𝑠𝑡 𝑎, 𝑝 + δ < 𝑑𝑖𝑠𝑡 𝑎, 𝑛

• Suitability of negatives for training:
• Only easy negatives for training – insignificant role in learning, if any at all

• Only hard negatives for training – network:
• Converges to a local minimum at best, or

• Collapses to a state in which all the embeddings are zero

• The most suitable for training are semi-hard negatives
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Triplet loss – determining negatives
• Semi-hard negative mining (𝑛2)

• Negatives sufficiently close to anchor

• Margin δ has to be carefully set:
• Appropriate value – network correctly distinguishes between positive/negative samples

• Too large/small value – network optimization process may get stuck in a local minimum

• To properly set the margin, all embeddings are normalized to be of size unity
• Margin typically set to δ = 0.2
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Triplet loss – calculation
• List of triplets (𝑥𝑖

𝑎, 𝑥𝑖
𝑝
, 𝑥𝑖

𝑛) of a batch of cardinality 𝑁

𝐿 =෍

𝑖=1

𝑁

max 0, 𝑑𝑖𝑠𝑡2(𝑓 𝑥𝑖
𝑎 , 𝑓 𝑥𝑖

𝑝
) − 𝑑𝑖𝑠𝑡2(𝑓 𝑥𝑖

𝑎 , 𝑓 𝑥𝑖
𝑛 ) + δ

• No contributions from the negatives that are outside the margin (max returns 0)
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Results on CIFAR-10
• Training on the CIFAR-10 dataset

• Contrastive loss learning: Precision@1 = 74%

• Triplet loss learning: Precision@1 = 84%
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Coding issues
• Goal – determine pairs/triplets → calculate pair-wise distances

• Variables:
• Batch of size 𝐵

• Dimensionality of embeddings: 𝑀

• Embeddings-data array 𝑋 of shape 𝐵 ×𝑀

• Labels of embeddings: 𝐵 × 1

• Easy solution – iterative processing (for-loops) to determine distances
• The cost of iterative processing is simply too much great

• GPU solution – matrix multiplications – not a friend with for-loops
• Thousand-fold speedup when you eliminate the loops that you would otherwise 

need for estimating
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Coding issues
• Easy solution – iterative processing
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Coding issues
• GPU solution – matrix multiplications

• Implementation based on tensors

• In case of iterative processing: if batch size is 128, this results in 8,192 fetches 
from the GPU memory (1282/2)

• Solution using 1 GPU fetch → >8 K speedup

1) Determining pairs using the structure with labels (of 𝐵 dimensionality):
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Coding issues
• GPU solution – matrix multiplications

2) Calculating the distance matrix:
• Euclidean distance between vectors Ԧ𝑥 and Ԧ𝑦 : Ԧ𝑥 − Ԧ𝑦 2 = Ԧ𝑥 2 − 2 Ԧ𝑥 Ԧ𝑦𝑇 + Ԧ𝑦 2

• The square of the norm of each of the vectors

• The value of the dot product between the two vectors

• Calculating a dot product of every pair of embedding vectors in X:
𝑑𝑜𝑡_𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠 = 𝑋@𝑋. 𝑇

• Vector norms for the embedding vectors are on diagonal
𝑠𝑞𝑢𝑎𝑟𝑒𝑑_𝑛𝑜𝑟𝑚𝑠_𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔_𝑣𝑒𝑐𝑠 = 𝑡𝑜𝑟𝑐ℎ. 𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙(𝑑𝑜𝑡_𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠)

• Dot products between pairs of embedding vectors are in the off-diagonal elements

• Calculating the Euclidean distance matrix 𝐵 × 𝐵 (𝐵 = 6):
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒_𝑚𝑎𝑡𝑟𝑖𝑥
= 𝑠𝑞𝑢𝑎𝑟𝑒𝑑_𝑛𝑜𝑟𝑚𝑠_𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔_𝑣𝑒𝑐𝑠. 𝑣𝑖𝑒𝑤(1, 6) − 2.0 ∙ 𝑑𝑜𝑡_𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠
+ 𝑠𝑞𝑢𝑎𝑟𝑒𝑑_𝑛𝑜𝑟𝑚𝑠_𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔_𝑣𝑒𝑐𝑠. 𝑣𝑖𝑒𝑤(6, 1)

• Note: operators for tensors are overloaded to add (or subtract) three tensors of different shapes
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Image embeddings – what we know
• Training a neural network based on PC/Triplet loss learning

• Transform query and each database image into an embedding
• Mapping function 𝑓() extracting embedding 𝑓 𝑥 for object 𝑥

• Given two images 𝑥 and 𝑦, their closeness can be quantified by the Euclidean 
distance: 𝑑𝑖𝑠𝑡 𝑓 𝑥 , 𝑓 𝑦 = 𝑓 𝑥 − 𝑓 𝑦 2
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Search over image embeddings
• Query image ~ query embedding ~ query

• k-nearest neighbor (k-NN) query
• Finding the k database images that are the most similar to the query image

• Similarity between query and database images based on the Euclidean/cosine 
distance between their embeddings
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Search over image embeddings
• Many applications of image search, e.g.:

• Photo organization – grouping images into albums automatically by recognizing 
similar faces, locations, or objects

• Fashion and e-commerce – outfit pairing in online stores
• Recommending matching items (e.g., shoes, bags, or accessories) by comparing product 

images based on style, color, and texture

• Visual similarity in product search – enabling users to upload an image of a product to find 
similar items in the store

• Cultural heritage and art preservation
• Artifact identification – comparing images of newly found artifacts with existing ones to 

determine origin or classification

• Style similarity matching – finding paintings with similar styles for study or curation

• Duplicate image detection – removing similar or exact copies of an image in 
large databases to ensure unique content
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Search over large image databases
• Brute-force approach:

• Comparing the query embedding against each database embedding

• 𝑂(𝑁) complexity (𝑁 is the size of the dataset) – not scalable

• How to search when the database of embeddings is very large?

• Solution – Approximate Nearest Neighbor (ANN) algorithms
• Many algorithms but leading ones are:

• Locality Sensitive Hashing (LSH) – PA212 course

• Product Quantization (PQ)
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Product Quantization (PQ)
• PQ – extension of the very old Vector Quantization (VQ) idea

• VQ idea:
• Compressing a high-dimensional image vector (embedding) into a single 

codeword, typically an integer value

• Pre-processing phase:
• Create a mapping from all codewords to the original image vectors within a database

• Each codeword points to the list of all the database images with the same codeword

• This mapping structure is referred to as the lookup table or inverted index

• Search phase:
• Transform the query into a single codeword

• Use the lookup table to get the candidate image vectors of the same codeword as the query

• It is also possible to consider candidate vectors having the codeword “relevant” (not strictly the same)

• Compute the distance between the original query vector and all candidate vectors

• Return the k-nearest candidate vectors with respect to the query vector
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VQ
• Compression idea:

• Partitioning a vector space into Voronoi cells with respect to a set of points
• Points are typically called the centroids (pivots) of the cells in which they reside

• Voronoi diagram – partitioning the D-dimensional space of embeddings into cells {𝑐1, 𝑐2, … , 𝑐𝑛}
determined by pivots {𝑝1, 𝑝2, … , 𝑝𝑛}; each cell 𝑐𝑖 gets its ID ~ codeword

• All the vectors in cell 𝑐𝑖 are closer to the pivot 𝑝𝑖 than to any other pivot
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VQ
• Pre-processing phase:

• Creating a codebook of 𝑛 = 2𝐵 codewords
• The 𝑛 centroids (~cells) are typically the K centroids generated by applying the K-means 

algorithm to the (sample of) database of vectors

• Any vector can be quantized in the underlying vector space to one of the K cluster centers

• Vectors that fall in the same cluster will be mapped to the same codeword

• Clusters can be differently populated based on data distribution

• Each codeword is represented by an integer value → B-bit representation

• Managing a lookup table with 2𝐵 codewords
• Transforming each database image vector into a codeword

• Each codeword in the lookup table is associated with a list of the database images (or paths 
to these images) of the same codeword

• Dimensionality of data can be dramatically reduced – example scenario:
• Each image represented by a 512-D embedding vector of floats → 512 ∙ 4 = 2,048 bytes

• 𝐵 = 16→ 512-D vectors quantized to 216 = 65,536 codewords

• Each image then represented by the 16-bit code (2 bytes) → 1,024x compression
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• Search phase:
• Before the query is transformed to codeword, the ranking of pivots is created

• The distance between the query vector and each pivot vector must be calculated

• The query gets the codeword corresponding to the nearest (most-ranked) pivot
• Other “query-relevant” codewords can also be considered, e.g., as 2nd or 3rd most-ranked

• The database vectors associated with the same codeword as the query 
codeword (or any of “query-relevant” codewords) become candidates

• The distance between the query vector and each candidate is evaluated
• Each candidate vector must be loaded, e.g., from secondary storage

• The k-most similar candidates (with the smallest distance) are returned as the
query result

𝑝1

VQ
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VQ
• Limitations of VQ:

• If the codebook is too large (e.g., 𝐵 = 64→ 264 clusters are needed to be 
found), it is impossible for K-means to detect such a huge number of clusters

• Returning the k-most query relevant database vectors requires to load a large 
set of candidate vectors and calculate their distance with respect to the query
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PQ
• Product quantization (PQ) idea:

• Original database vector split into several segments (sub-vectors)
• Each sub-vector follows the vector quantization independently

• Quantized vector – concatenation of codewords of individual segments

• Pre-processing phase:
• Create a sub-quantizer – a codebook for each of the segments – separately (i.e., #codebooks 

= #segments)

• Clustering operation applied to each set of sub-vectors

• Create a mapping from all codewords of each codebook to the original image vectors within a 
database

• Search phase:
• Original database vectors need not be loaded (e.g., from secondary storage)

• Distance between the query and a database vector is efficiently approximated

• Based on pre-computed distances between the query segments and centroids in each codebook
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• Pre-processing phase:
• Creating 𝑚 segments → 𝑚 codebooks, each of 𝑛 = 2𝐵 codewords

• Each codeword is again represented by an integer value → 𝐵-bit representation

• Codewords of all segments are concatenated →(𝑚 ∙ 𝐵)-bit representation

• Managing a lookup table with 2𝐵 codewords for each segment (𝑚 lookup tables)

PQ
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• Search phase:
• 1) Precompute the distances between each query sub-vector and each centroid

in the corresponding codebook → 𝑚 ∙ 2𝐵 distances in total
• Distances kept within a query distance matrix 𝑄𝐷𝑀 of size 𝑚 × 2𝐵

• E.g., 32 ∙ 256 = 8,192 distances in the previous example scenario, which is cheap to compute

• Illustration of distance precomputation:

• 𝑄𝐷𝑀 of size 𝑚 × 2𝐵 = 4 × 4

• 𝑚 = 4, 𝐵 = 2

PQ
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PQ
• Search phase:

• 2) Identify the nearest cluster(s) in the same way as in the VQ approach

• 3) Approximate the distance of each candidate vector in the nearest cluster(s):
• For 𝑖-th segment and associated codeword c𝑖 of the candidate vector, approximate the sub-

distance between 𝑖-th query segment and 𝑖-th candidate segment by the precomputed sub-
distance 𝑄𝐷𝑀[𝑖, 𝑐𝑖]

• Sum the sub-distances for all the segments: σ𝑖=0
𝑚−1𝑄𝐷𝑀[𝑖, 𝑐𝑖]

Illustration of approximating the distance (for query                    ):

• Candidate                    : σ𝑖=0
3 𝑄𝐷𝑀 𝑖, 𝑐𝑖 = 0.2 + 0.1 + 0.2 + 0.2 = 0.7

• Candidate                    : 0.2 + 0.1 + 0.7 + 0.2 = 1.2

• Candidate                    : 0.4 + 0.1 + 0.2 + 0.1 = 0.8
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PQ
• Summary:

• For distance approximations, the candidate vectors are not accessed
• Accessing candidate vectors can be bottleneck in VQ, especially when vectors are stored 

within secondary storage

• ANN search carried out efficiently in high dimensional vector spaces even when a database 
has billions of vectors

• Approximated distances need not be perfect
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Similarity search using FAISS
• FAISS – Facebook AI Similarity Search

• Library developed by Facebook AI Research for efficient similarity 
search and clustering of dense vectors

• Useful for large-scale similarity search problems, which are common 
in various machine learning and information retrieval tasks

• Designed to work on either the GPU or CPU and provides significant 
performance improvements compared to other nearest neighbor 
search algorithms

• One of the best implementation of the Product Quantization approach 
to similarity search

• Implemented in C++ with Python bindings
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FAISS
• Several techniques to achieve efficient similarity search:

• Quantization – compresses the embeddings which significantly reduces 
memory usage and accelerates distance computations
• Supports Product Quantization (PQ)

• Indexing – FAISS provides multiple index types for different use cases and 
trade-offs between search speed and search quality
• Flat index – brute-force index that computes exact distances between query vectors and 

indexed vectors

• IVF (Inverted File) index – partitioned index that divides the vector space into Voronoi cells

• HNSW (Hierarchical Navigable Small World) – graph-based index that builds a hierarchical 
graph structure, enabling efficient nearest neighbor search with logarithmic complexity
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FAISS
• Example of IVF (Inverted File) index:

• nprobes parameter specifies the number of nearest 
cluster(s) to be visited

• Clusters ranked by the distance between the cluster 
centroid and query vector
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FAISS
• Useful references

• Tutorials:
• https://engineering.fb.com/2017/03/29/data-infrastructure/faiss-a-library-for-efficient-similarity-

search/

• https://github.com/facebookresearch/faiss/wiki/

• Research papers:
• Johnson et al.: Billion-scale similarity search with GPUs, 2017: 

https://arxiv.org/abs/1702.08734

• Douze et al.: The FAISS library, 2024: https://arxiv.org/abs/2401.08281
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Sources
• Avi Kak and Charles Bouman: Metric Learning with Deep Neural 

Networks. Purdue University, 2024

• https://www.pinecone.io/learn/series/faiss/faiss-tutorial/
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